Sierra Leonard BSc , Meet A. Patel BSc , Zili Zhou MPH , Ha Le MSc , Prosanta Mondal PhD , Scott J. Adams MD, PhD
{"title":"比较人工智能和传统回归模型在肺癌风险预测中的应用:系统综述和荟萃分析。","authors":"Sierra Leonard BSc , Meet A. Patel BSc , Zili Zhou MPH , Ha Le MSc , Prosanta Mondal PhD , Scott J. Adams MD, PhD","doi":"10.1016/j.jacr.2025.02.042","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Accurately identifying individuals who are at high risk of lung cancer is critical to optimize lung cancer screening with low-dose CT (LDCT). We sought to compare the performance of traditional regression models and artificial intelligence (AI)-based models in predicting future lung cancer risk.</div></div><div><h3>Methods</h3><div>A systematic review and meta-analysis were conducted with reporting according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE, Embase, Scopus, and the Cumulative Index to Nursing and Allied Health Literature databases for studies reporting the performance of AI or traditional regression models for predicting lung cancer risk. Two researchers screened articles, and a third researcher resolved conflicts. Model characteristics and predictive performance metrics were extracted. The quality of studies was assessed using the Prediction model Risk of Bias Assessment Tool. A meta-analysis assessed the discrimination performance of models, based on area under the receiver operating characteristic curve (AUC).</div></div><div><h3>Results</h3><div>One hundred forty studies met inclusion criteria and included 185 traditional and 64 AI-based models. Of these, 16 AI models and 65 traditional models have been externally validated. The pooled AUC of external validations of AI models was 0.82 (95% confidence interval [CI], 0.80-0.85), and the pooled AUC for traditional regression models was 0.73 (95% CI, 0.72-0.74). In a subgroup analysis, AI models that included LDCT had a pooled AUC of 0.85 (95% CI, 0.82-0.88). Overall risk of bias was high for both AI and traditional models.</div></div><div><h3>Conclusion</h3><div>AI-based models, particularly those using imaging data, show promise for improving lung cancer risk prediction over traditional regression models. Future research should focus on prospective validation of AI models and direct comparisons with traditional methods in diverse populations.</div></div>","PeriodicalId":49044,"journal":{"name":"Journal of the American College of Radiology","volume":"22 6","pages":"Pages 675-690"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing Artificial Intelligence and Traditional Regression Models in Lung Cancer Risk Prediction Using A Systematic Review and Meta-Analysis\",\"authors\":\"Sierra Leonard BSc , Meet A. Patel BSc , Zili Zhou MPH , Ha Le MSc , Prosanta Mondal PhD , Scott J. Adams MD, PhD\",\"doi\":\"10.1016/j.jacr.2025.02.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Accurately identifying individuals who are at high risk of lung cancer is critical to optimize lung cancer screening with low-dose CT (LDCT). We sought to compare the performance of traditional regression models and artificial intelligence (AI)-based models in predicting future lung cancer risk.</div></div><div><h3>Methods</h3><div>A systematic review and meta-analysis were conducted with reporting according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE, Embase, Scopus, and the Cumulative Index to Nursing and Allied Health Literature databases for studies reporting the performance of AI or traditional regression models for predicting lung cancer risk. Two researchers screened articles, and a third researcher resolved conflicts. Model characteristics and predictive performance metrics were extracted. The quality of studies was assessed using the Prediction model Risk of Bias Assessment Tool. A meta-analysis assessed the discrimination performance of models, based on area under the receiver operating characteristic curve (AUC).</div></div><div><h3>Results</h3><div>One hundred forty studies met inclusion criteria and included 185 traditional and 64 AI-based models. Of these, 16 AI models and 65 traditional models have been externally validated. The pooled AUC of external validations of AI models was 0.82 (95% confidence interval [CI], 0.80-0.85), and the pooled AUC for traditional regression models was 0.73 (95% CI, 0.72-0.74). In a subgroup analysis, AI models that included LDCT had a pooled AUC of 0.85 (95% CI, 0.82-0.88). Overall risk of bias was high for both AI and traditional models.</div></div><div><h3>Conclusion</h3><div>AI-based models, particularly those using imaging data, show promise for improving lung cancer risk prediction over traditional regression models. Future research should focus on prospective validation of AI models and direct comparisons with traditional methods in diverse populations.</div></div>\",\"PeriodicalId\":49044,\"journal\":{\"name\":\"Journal of the American College of Radiology\",\"volume\":\"22 6\",\"pages\":\"Pages 675-690\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American College of Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1546144025001474\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American College of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1546144025001474","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Comparing Artificial Intelligence and Traditional Regression Models in Lung Cancer Risk Prediction Using A Systematic Review and Meta-Analysis
Purpose
Accurately identifying individuals who are at high risk of lung cancer is critical to optimize lung cancer screening with low-dose CT (LDCT). We sought to compare the performance of traditional regression models and artificial intelligence (AI)-based models in predicting future lung cancer risk.
Methods
A systematic review and meta-analysis were conducted with reporting according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE, Embase, Scopus, and the Cumulative Index to Nursing and Allied Health Literature databases for studies reporting the performance of AI or traditional regression models for predicting lung cancer risk. Two researchers screened articles, and a third researcher resolved conflicts. Model characteristics and predictive performance metrics were extracted. The quality of studies was assessed using the Prediction model Risk of Bias Assessment Tool. A meta-analysis assessed the discrimination performance of models, based on area under the receiver operating characteristic curve (AUC).
Results
One hundred forty studies met inclusion criteria and included 185 traditional and 64 AI-based models. Of these, 16 AI models and 65 traditional models have been externally validated. The pooled AUC of external validations of AI models was 0.82 (95% confidence interval [CI], 0.80-0.85), and the pooled AUC for traditional regression models was 0.73 (95% CI, 0.72-0.74). In a subgroup analysis, AI models that included LDCT had a pooled AUC of 0.85 (95% CI, 0.82-0.88). Overall risk of bias was high for both AI and traditional models.
Conclusion
AI-based models, particularly those using imaging data, show promise for improving lung cancer risk prediction over traditional regression models. Future research should focus on prospective validation of AI models and direct comparisons with traditional methods in diverse populations.
期刊介绍:
The official journal of the American College of Radiology, JACR informs its readers of timely, pertinent, and important topics affecting the practice of diagnostic radiologists, interventional radiologists, medical physicists, and radiation oncologists. In so doing, JACR improves their practices and helps optimize their role in the health care system. By providing a forum for informative, well-written articles on health policy, clinical practice, practice management, data science, and education, JACR engages readers in a dialogue that ultimately benefits patient care.