{"title":"应变能在人类胫骨在不同的运动与可调的腿部重量:一个主题特定的计算模型分析。","authors":"Xuan Guo, XinSheng Xu, Xiang Geng, Zhenming Zhang, Xin Ma, Wen-Ming Chen","doi":"10.1007/s11517-025-03335-9","DOIUrl":null,"url":null,"abstract":"<p><p>Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain energy in human tibia during different exercises with adjustable leg weights: a subject-specific computational model analysis.\",\"authors\":\"Xuan Guo, XinSheng Xu, Xiang Geng, Zhenming Zhang, Xin Ma, Wen-Ming Chen\",\"doi\":\"10.1007/s11517-025-03335-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03335-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03335-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Strain energy in human tibia during different exercises with adjustable leg weights: a subject-specific computational model analysis.
Physical exercise is recommended to improve tibia strength, a common site for stress injuries, while identifying optimal training regimens remains a significant challenge. This study investigated tibial responses to varied exercise regimens using a subject-specific computational modeling approach. A subject-specific neuro-musculoskeletal model was combined with a finite element model to assess the effects of various exercises (jumping, landing, squatting, and walking) on tibial strain energy density (SED), as well as the impact of adjustable leg weights placed at different sites (shank versus thigh). The temporal relationship between joint/muscular loads and SED was then analyzed. A non-linear relationship between load weights and SED increase was observed, with 4% body weight load being the optimal load weight. Additionally, load carriage sites significantly influenced SED levels, emphasizing the necessity for individualized training regimens. The gastrocnemius, soleus, and peroneal muscles were identified as key contributors to tibial SED, with the highest correlations observed during various activities. This study underscored the utility of the subject-specific computational model in assessing the biomechanical impact of varied load weights, load sites, and exercise types. For a target bone site, it is beneficial to customize exercise programs based on individual biomechanical properties in order to maximize training benefits and meanwhile reduce risks of injuries.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).