{"title":"在估计人口平均多基因评分史的背景下评估arg估计方法。","authors":"Dandan Peng, Obadiah J Mulder, Michael D Edge","doi":"10.1093/genetics/iyaf033","DOIUrl":null,"url":null,"abstract":"<p><p>Scalable methods for estimating marginal coalescent trees across the genome present new opportunities for studying evolution and have generated considerable excitement, with new methods extending scalability to thousands of samples. Benchmarking of the available methods has revealed general tradeoffs between accuracy and scalability, but performance in downstream applications has not always been easily predictable from general performance measures, suggesting that specific features of the ancestral recombination graph (ARG) may be important for specific downstream applications of estimated ARGs. To exemplify this point, we benchmark ARG estimation methods with respect to a specific set of methods for estimating the historical time course of a population-mean polygenic score (PGS) using the marginal coalescent trees encoded by the ARG. Here, we examine the performance in simulation of seven ARG estimation methods: ARGweaver, RENT+, Relate, tsinfer+tsdate, ARG-Needle, ASMC-clust, and SINGER, using their estimated coalescent trees and examining bias, mean squared error, confidence interval coverage, and Type I and II error rates of the downstream methods. Although it does not scale to the sample sizes attainable by other new methods, SINGER produced the most accurate estimated PGS histories in many instances, even when Relate, tsinfer+tsdate, ARG-Needle, and ASMC-clust used samples 10 or more times as large as those used by SINGER. In general, the best choice of method depends on the number of samples available and the historical time period of interest. In particular, the unprecedented sample sizes allowed by Relate, tsinfer+tsdate, ARG-Needle, and ASMC-clust are of greatest importance when the recent past is of interest-further back in time, most of the tree has coalesced, and differences in contemporary sample size are less salient.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005257/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating ARG-estimation methods in the context of estimating population-mean polygenic score histories.\",\"authors\":\"Dandan Peng, Obadiah J Mulder, Michael D Edge\",\"doi\":\"10.1093/genetics/iyaf033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scalable methods for estimating marginal coalescent trees across the genome present new opportunities for studying evolution and have generated considerable excitement, with new methods extending scalability to thousands of samples. Benchmarking of the available methods has revealed general tradeoffs between accuracy and scalability, but performance in downstream applications has not always been easily predictable from general performance measures, suggesting that specific features of the ancestral recombination graph (ARG) may be important for specific downstream applications of estimated ARGs. To exemplify this point, we benchmark ARG estimation methods with respect to a specific set of methods for estimating the historical time course of a population-mean polygenic score (PGS) using the marginal coalescent trees encoded by the ARG. Here, we examine the performance in simulation of seven ARG estimation methods: ARGweaver, RENT+, Relate, tsinfer+tsdate, ARG-Needle, ASMC-clust, and SINGER, using their estimated coalescent trees and examining bias, mean squared error, confidence interval coverage, and Type I and II error rates of the downstream methods. Although it does not scale to the sample sizes attainable by other new methods, SINGER produced the most accurate estimated PGS histories in many instances, even when Relate, tsinfer+tsdate, ARG-Needle, and ASMC-clust used samples 10 or more times as large as those used by SINGER. In general, the best choice of method depends on the number of samples available and the historical time period of interest. In particular, the unprecedented sample sizes allowed by Relate, tsinfer+tsdate, ARG-Needle, and ASMC-clust are of greatest importance when the recent past is of interest-further back in time, most of the tree has coalesced, and differences in contemporary sample size are less salient.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12005257/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf033\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Evaluating ARG-estimation methods in the context of estimating population-mean polygenic score histories.
Scalable methods for estimating marginal coalescent trees across the genome present new opportunities for studying evolution and have generated considerable excitement, with new methods extending scalability to thousands of samples. Benchmarking of the available methods has revealed general tradeoffs between accuracy and scalability, but performance in downstream applications has not always been easily predictable from general performance measures, suggesting that specific features of the ancestral recombination graph (ARG) may be important for specific downstream applications of estimated ARGs. To exemplify this point, we benchmark ARG estimation methods with respect to a specific set of methods for estimating the historical time course of a population-mean polygenic score (PGS) using the marginal coalescent trees encoded by the ARG. Here, we examine the performance in simulation of seven ARG estimation methods: ARGweaver, RENT+, Relate, tsinfer+tsdate, ARG-Needle, ASMC-clust, and SINGER, using their estimated coalescent trees and examining bias, mean squared error, confidence interval coverage, and Type I and II error rates of the downstream methods. Although it does not scale to the sample sizes attainable by other new methods, SINGER produced the most accurate estimated PGS histories in many instances, even when Relate, tsinfer+tsdate, ARG-Needle, and ASMC-clust used samples 10 or more times as large as those used by SINGER. In general, the best choice of method depends on the number of samples available and the historical time period of interest. In particular, the unprecedented sample sizes allowed by Relate, tsinfer+tsdate, ARG-Needle, and ASMC-clust are of greatest importance when the recent past is of interest-further back in time, most of the tree has coalesced, and differences in contemporary sample size are less salient.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.