胶质母细胞瘤中的FN1免疫调节:来自中性粒细胞中心研究的见解。

IF 4.5 2区 医学 Q1 ONCOLOGY
Cancer Science Pub Date : 2025-03-07 DOI:10.1111/cas.70041
Xiangtian Meng, Xusen Yang, Junle Zhu, Huairui Chen, Chun Luo, Fenglin Zhang, Qin Zhang, Jingliang Ye
{"title":"胶质母细胞瘤中的FN1免疫调节:来自中性粒细胞中心研究的见解。","authors":"Xiangtian Meng,&nbsp;Xusen Yang,&nbsp;Junle Zhu,&nbsp;Huairui Chen,&nbsp;Chun Luo,&nbsp;Fenglin Zhang,&nbsp;Qin Zhang,&nbsp;Jingliang Ye","doi":"10.1111/cas.70041","DOIUrl":null,"url":null,"abstract":"<p>Neutrophils, as key components of the tumor microenvironment, play a crucial role in cancer progression and prognosis. This study aimed to identify a neutrophil-related gene signature to improve prognostic predictions and explore potential immunotherapy targets for glioblastoma multiforme (GBM) patients. Through co-expression analysis, 60 neutrophil-associated genes were identified, showing significant enrichment in 159 Gene Ontology terms and eight KEGG pathways. Among these, 10 genes were significantly associated with patient survival, leading to the development of a six-gene risk model termed the Neutrophil-Related Gene Prognostic Index (NRGPI). The NRGPI predicted overall survival (OS) in both training and validation cohorts (<i>p</i> &lt; 0.05), with enhanced prognostic accuracy when combined with clinicopathological factors. Higher NRGPI scores were correlated with worse OS, increased mortality, and more aggressive disease progression. Immune profiling linked NRGPI to immune cell infiltration, immune checkpoint expression, and tumor mutation burden, suggesting its potential in identifying candidates for immunotherapy. Among the identified genes, FN1 emerged as a central regulator, associated with immune cell composition and poor prognosis. Pan-cancer analysis revealed consistent upregulation of FN1 across cancer types, underscoring its broad clinical relevance. Additionally, tissue microarray analysis using multiplex immunofluorescence on 84 GBM samples confirmed co-expression of FN1, SDC1, and TWIST1, with higher levels associated with reduced survival. These findings establish NRGPI as a valuable prognostic biomarker for GBM, offering novel insights into the immune landscape and positioning FN1 as a promising therapeutic target for further investigation in GBM treatment.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"116 6","pages":"1758-1772"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.70041","citationCount":"0","resultStr":"{\"title\":\"FN1 Immunoregulation in Glioblastoma: Insights From Neutrophil-Centric Studies\",\"authors\":\"Xiangtian Meng,&nbsp;Xusen Yang,&nbsp;Junle Zhu,&nbsp;Huairui Chen,&nbsp;Chun Luo,&nbsp;Fenglin Zhang,&nbsp;Qin Zhang,&nbsp;Jingliang Ye\",\"doi\":\"10.1111/cas.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neutrophils, as key components of the tumor microenvironment, play a crucial role in cancer progression and prognosis. This study aimed to identify a neutrophil-related gene signature to improve prognostic predictions and explore potential immunotherapy targets for glioblastoma multiforme (GBM) patients. Through co-expression analysis, 60 neutrophil-associated genes were identified, showing significant enrichment in 159 Gene Ontology terms and eight KEGG pathways. Among these, 10 genes were significantly associated with patient survival, leading to the development of a six-gene risk model termed the Neutrophil-Related Gene Prognostic Index (NRGPI). The NRGPI predicted overall survival (OS) in both training and validation cohorts (<i>p</i> &lt; 0.05), with enhanced prognostic accuracy when combined with clinicopathological factors. Higher NRGPI scores were correlated with worse OS, increased mortality, and more aggressive disease progression. Immune profiling linked NRGPI to immune cell infiltration, immune checkpoint expression, and tumor mutation burden, suggesting its potential in identifying candidates for immunotherapy. Among the identified genes, FN1 emerged as a central regulator, associated with immune cell composition and poor prognosis. Pan-cancer analysis revealed consistent upregulation of FN1 across cancer types, underscoring its broad clinical relevance. Additionally, tissue microarray analysis using multiplex immunofluorescence on 84 GBM samples confirmed co-expression of FN1, SDC1, and TWIST1, with higher levels associated with reduced survival. These findings establish NRGPI as a valuable prognostic biomarker for GBM, offering novel insights into the immune landscape and positioning FN1 as a promising therapeutic target for further investigation in GBM treatment.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"116 6\",\"pages\":\"1758-1772\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.70041\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.70041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.70041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中性粒细胞作为肿瘤微环境的关键组成部分,在肿瘤的进展和预后中起着至关重要的作用。本研究旨在鉴定中性粒细胞相关基因标记,以改善多形性胶质母细胞瘤(GBM)患者的预后预测并探索潜在的免疫治疗靶点。通过共表达分析,鉴定出60个中性粒细胞相关基因,在159个基因本体术语和8个KEGG通路中显著富集。在这些基因中,有10个基因与患者生存显著相关,这导致了六基因风险模型的发展,称为中性粒细胞相关基因预后指数(NRGPI)。NRGPI预测训练组和验证组的总生存期(OS) (p
本文章由计算机程序翻译,如有差异,请以英文原文为准。

FN1 Immunoregulation in Glioblastoma: Insights From Neutrophil-Centric Studies

FN1 Immunoregulation in Glioblastoma: Insights From Neutrophil-Centric Studies

Neutrophils, as key components of the tumor microenvironment, play a crucial role in cancer progression and prognosis. This study aimed to identify a neutrophil-related gene signature to improve prognostic predictions and explore potential immunotherapy targets for glioblastoma multiforme (GBM) patients. Through co-expression analysis, 60 neutrophil-associated genes were identified, showing significant enrichment in 159 Gene Ontology terms and eight KEGG pathways. Among these, 10 genes were significantly associated with patient survival, leading to the development of a six-gene risk model termed the Neutrophil-Related Gene Prognostic Index (NRGPI). The NRGPI predicted overall survival (OS) in both training and validation cohorts (p < 0.05), with enhanced prognostic accuracy when combined with clinicopathological factors. Higher NRGPI scores were correlated with worse OS, increased mortality, and more aggressive disease progression. Immune profiling linked NRGPI to immune cell infiltration, immune checkpoint expression, and tumor mutation burden, suggesting its potential in identifying candidates for immunotherapy. Among the identified genes, FN1 emerged as a central regulator, associated with immune cell composition and poor prognosis. Pan-cancer analysis revealed consistent upregulation of FN1 across cancer types, underscoring its broad clinical relevance. Additionally, tissue microarray analysis using multiplex immunofluorescence on 84 GBM samples confirmed co-expression of FN1, SDC1, and TWIST1, with higher levels associated with reduced survival. These findings establish NRGPI as a valuable prognostic biomarker for GBM, offering novel insights into the immune landscape and positioning FN1 as a promising therapeutic target for further investigation in GBM treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer Science
Cancer Science 医学-肿瘤学
自引率
3.50%
发文量
406
审稿时长
2 months
期刊介绍: Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports. Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信