中国债券违约:利用机器学习进行预测

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE
Bei Cui, Li Ge, Priscila Grecov
{"title":"中国债券违约:利用机器学习进行预测","authors":"Bei Cui,&nbsp;Li Ge,&nbsp;Priscila Grecov","doi":"10.1111/irfi.70010","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a superior default-prediction model using machine-learning techniques. Traditional risk-assessment tools have fallen short, especially for foreign investors who face significant transparency issues. Using detailed financial data on Chinese bond issuers, our model provides much broader coverage than international credit-rating agencies offer. We achieve better than 90% accuracy in predicting credit-bond defaults, significantly outperforming Altman's <i>Z</i>-scores. This study not only advances predictive analytics in financial risk management but also serves as an early warning device and reliable default-risk detector for investors aiming to navigate the complexities of the Chinese bond market.</p>","PeriodicalId":46664,"journal":{"name":"International Review of Finance","volume":"25 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/irfi.70010","citationCount":"0","resultStr":"{\"title\":\"Bond defaults in China: Using machine learning to make predictions\",\"authors\":\"Bei Cui,&nbsp;Li Ge,&nbsp;Priscila Grecov\",\"doi\":\"10.1111/irfi.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a superior default-prediction model using machine-learning techniques. Traditional risk-assessment tools have fallen short, especially for foreign investors who face significant transparency issues. Using detailed financial data on Chinese bond issuers, our model provides much broader coverage than international credit-rating agencies offer. We achieve better than 90% accuracy in predicting credit-bond defaults, significantly outperforming Altman's <i>Z</i>-scores. This study not only advances predictive analytics in financial risk management but also serves as an early warning device and reliable default-risk detector for investors aiming to navigate the complexities of the Chinese bond market.</p>\",\"PeriodicalId\":46664,\"journal\":{\"name\":\"International Review of Finance\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/irfi.70010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/irfi.70010\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/irfi.70010","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种使用机器学习技术的高级默认预测模型。传统的风险评估工具已达不到预期,尤其是对面临重大透明度问题的外国投资者而言。通过使用中国债券发行人的详细财务数据,我们的模型提供了比国际信用评级机构更广泛的覆盖范围。我们预测信用债券违约的准确率超过90%,显著优于Altman的z分数。本研究不仅推动了金融风险管理的预测分析,而且为投资者在中国债券市场的复杂性中导航提供了早期预警装置和可靠的违约风险检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bond defaults in China: Using machine learning to make predictions

Bond defaults in China: Using machine learning to make predictions

This paper proposes a superior default-prediction model using machine-learning techniques. Traditional risk-assessment tools have fallen short, especially for foreign investors who face significant transparency issues. Using detailed financial data on Chinese bond issuers, our model provides much broader coverage than international credit-rating agencies offer. We achieve better than 90% accuracy in predicting credit-bond defaults, significantly outperforming Altman's Z-scores. This study not only advances predictive analytics in financial risk management but also serves as an early warning device and reliable default-risk detector for investors aiming to navigate the complexities of the Chinese bond market.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Review of Finance
International Review of Finance BUSINESS, FINANCE-
CiteScore
3.30
自引率
5.90%
发文量
28
期刊介绍: The International Review of Finance (IRF) publishes high-quality research on all aspects of financial economics, including traditional areas such as asset pricing, corporate finance, market microstructure, financial intermediation and regulation, financial econometrics, financial engineering and risk management, as well as new areas such as markets and institutions of emerging market economies, especially those in the Asia-Pacific region. In addition, the Letters Section in IRF is a premium outlet of letter-length research in all fields of finance. The length of the articles in the Letters Section is limited to a maximum of eight journal pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信