{"title":"糖尿病和非糖尿病小鼠脑卒中的时间转录组差异","authors":"Yifei Lv, Xiaomin Dong, Yujie Xi, Fang Zhan, Yining Mao, Jianhua Wu, Xiaoyan Wu","doi":"10.1007/s12031-025-02327-6","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetes is a key risk factor for ischemic stroke and negatively impacts long-term outcomes post-stroke. However, genomic studies on diabetic stroke remain insufficient. This study aims to investigate the interaction between diabetes and stroke from the acute phase to the early recovery phase by establishing a diabetic stroke animal model and comparing transcriptome sequencing results with those of non-diabetic stroke models. The study identified a greater number of downregulated genes in the diabetic stroke group compared to the non-diabetic group at different stages post-stroke. Functional enrichment analysis revealed an enhanced immune response and a relatively lower neurodegeneration potential in the diabetic group. Post-stroke, a higher presence of CD4 + T cells, eosinophils, and M1 macrophages was observed in the diabetic group. Additionally, time-series analysis identified a set of genes with time-specific expression patterns following diabetic stroke. This study underscores the role of inflammation and immune responses as potential factors exacerbating ischemic stroke in diabetes while also identifying gene regulatory networks at different stages post-stroke. These findings provide new insights into the role of diabetes in stroke and suggest potential therapeutic targets for improving outcomes in diabetic patients.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal Transcriptomic Differences in Stroke Between Diabetic and Non-Diabetic Mice\",\"authors\":\"Yifei Lv, Xiaomin Dong, Yujie Xi, Fang Zhan, Yining Mao, Jianhua Wu, Xiaoyan Wu\",\"doi\":\"10.1007/s12031-025-02327-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diabetes is a key risk factor for ischemic stroke and negatively impacts long-term outcomes post-stroke. However, genomic studies on diabetic stroke remain insufficient. This study aims to investigate the interaction between diabetes and stroke from the acute phase to the early recovery phase by establishing a diabetic stroke animal model and comparing transcriptome sequencing results with those of non-diabetic stroke models. The study identified a greater number of downregulated genes in the diabetic stroke group compared to the non-diabetic group at different stages post-stroke. Functional enrichment analysis revealed an enhanced immune response and a relatively lower neurodegeneration potential in the diabetic group. Post-stroke, a higher presence of CD4 + T cells, eosinophils, and M1 macrophages was observed in the diabetic group. Additionally, time-series analysis identified a set of genes with time-specific expression patterns following diabetic stroke. This study underscores the role of inflammation and immune responses as potential factors exacerbating ischemic stroke in diabetes while also identifying gene regulatory networks at different stages post-stroke. These findings provide new insights into the role of diabetes in stroke and suggest potential therapeutic targets for improving outcomes in diabetic patients.</p></div>\",\"PeriodicalId\":652,\"journal\":{\"name\":\"Journal of Molecular Neuroscience\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12031-025-02327-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02327-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Temporal Transcriptomic Differences in Stroke Between Diabetic and Non-Diabetic Mice
Diabetes is a key risk factor for ischemic stroke and negatively impacts long-term outcomes post-stroke. However, genomic studies on diabetic stroke remain insufficient. This study aims to investigate the interaction between diabetes and stroke from the acute phase to the early recovery phase by establishing a diabetic stroke animal model and comparing transcriptome sequencing results with those of non-diabetic stroke models. The study identified a greater number of downregulated genes in the diabetic stroke group compared to the non-diabetic group at different stages post-stroke. Functional enrichment analysis revealed an enhanced immune response and a relatively lower neurodegeneration potential in the diabetic group. Post-stroke, a higher presence of CD4 + T cells, eosinophils, and M1 macrophages was observed in the diabetic group. Additionally, time-series analysis identified a set of genes with time-specific expression patterns following diabetic stroke. This study underscores the role of inflammation and immune responses as potential factors exacerbating ischemic stroke in diabetes while also identifying gene regulatory networks at different stages post-stroke. These findings provide new insights into the role of diabetes in stroke and suggest potential therapeutic targets for improving outcomes in diabetic patients.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.