假新闻检测的多模态双曲表示框架

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shanshan Feng;Guoxin Yu;Dawei Liu;Han Hu;Yong Luo;Hui Lin;Yew-Soon Ong
{"title":"假新闻检测的多模态双曲表示框架","authors":"Shanshan Feng;Guoxin Yu;Dawei Liu;Han Hu;Yong Luo;Hui Lin;Yew-Soon Ong","doi":"10.1109/TKDE.2025.3528951","DOIUrl":null,"url":null,"abstract":"The rapid growth of the internet has led to an alarming increase in the dissemination of fake news, which has had many negative effects on society. Various methods have been proposed for detecting fake news. However, these approaches suffer from several limitations. First, most existing works only consider news as separate entities and do not consider the correlations between fake news and real news. Moreover, these works are usually conducted in the Euclidean space, which is unable to capture complex relationships between news, in particular the hierarchical relationships. To tackle these issues, we introduce a novel <underline>M</u>ulti-modal <underline>H</u>yperbolic <underline>R</u>epresentation framework (MHR) for fake news detection. Specifically, we capture the correlations between news for graph construction to arrange and analyze different news. To fully utilize the multi-modal characteristics, we first extract the textual and visual information, and then design a Lorentzian multi-modal fusion module to fuse them as the node information in the graph. By utilizing the fully hyperbolic graph neural networks, we learn the graph’s representation in hyperbolic space, followed by a detector for detecting fake news. The experimental results on three real-world datasets demonstrate that our proposed MHR model achieves state-of-the-art performance, indicating the benefits of hyperbolic representation.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 4","pages":"2015-2028"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MHR: A Multi-Modal Hyperbolic Representation Framework for Fake News Detection\",\"authors\":\"Shanshan Feng;Guoxin Yu;Dawei Liu;Han Hu;Yong Luo;Hui Lin;Yew-Soon Ong\",\"doi\":\"10.1109/TKDE.2025.3528951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of the internet has led to an alarming increase in the dissemination of fake news, which has had many negative effects on society. Various methods have been proposed for detecting fake news. However, these approaches suffer from several limitations. First, most existing works only consider news as separate entities and do not consider the correlations between fake news and real news. Moreover, these works are usually conducted in the Euclidean space, which is unable to capture complex relationships between news, in particular the hierarchical relationships. To tackle these issues, we introduce a novel <underline>M</u>ulti-modal <underline>H</u>yperbolic <underline>R</u>epresentation framework (MHR) for fake news detection. Specifically, we capture the correlations between news for graph construction to arrange and analyze different news. To fully utilize the multi-modal characteristics, we first extract the textual and visual information, and then design a Lorentzian multi-modal fusion module to fuse them as the node information in the graph. By utilizing the fully hyperbolic graph neural networks, we learn the graph’s representation in hyperbolic space, followed by a detector for detecting fake news. The experimental results on three real-world datasets demonstrate that our proposed MHR model achieves state-of-the-art performance, indicating the benefits of hyperbolic representation.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 4\",\"pages\":\"2015-2028\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10840285/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10840285/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

互联网的快速发展导致了假新闻传播的惊人增长,这对社会产生了许多负面影响。人们提出了各种检测假新闻的方法。然而,这些方法受到一些限制。首先,大多数现有的作品只将新闻作为独立的实体来考虑,并没有考虑假新闻与真实新闻之间的相关性。此外,这些工作通常是在欧几里得空间中进行的,无法捕捉新闻之间的复杂关系,特别是层次关系。为了解决这些问题,我们引入了一种新的多模态双曲表示框架(MHR)用于假新闻检测。具体来说,我们捕捉新闻之间的相关性,构建图来排列和分析不同的新闻。为了充分利用多模态特征,首先提取文本信息和视觉信息,然后设计一个洛伦兹多模态融合模块,将它们融合为图中的节点信息。通过利用全双曲图神经网络,我们学习了图在双曲空间中的表示,然后使用检测器来检测假新闻。在三个真实数据集上的实验结果表明,我们提出的MHR模型达到了最先进的性能,表明了双曲线表示的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MHR: A Multi-Modal Hyperbolic Representation Framework for Fake News Detection
The rapid growth of the internet has led to an alarming increase in the dissemination of fake news, which has had many negative effects on society. Various methods have been proposed for detecting fake news. However, these approaches suffer from several limitations. First, most existing works only consider news as separate entities and do not consider the correlations between fake news and real news. Moreover, these works are usually conducted in the Euclidean space, which is unable to capture complex relationships between news, in particular the hierarchical relationships. To tackle these issues, we introduce a novel Multi-modal Hyperbolic Representation framework (MHR) for fake news detection. Specifically, we capture the correlations between news for graph construction to arrange and analyze different news. To fully utilize the multi-modal characteristics, we first extract the textual and visual information, and then design a Lorentzian multi-modal fusion module to fuse them as the node information in the graph. By utilizing the fully hyperbolic graph neural networks, we learn the graph’s representation in hyperbolic space, followed by a detector for detecting fake news. The experimental results on three real-world datasets demonstrate that our proposed MHR model achieves state-of-the-art performance, indicating the benefits of hyperbolic representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信