基于证据的AMR关注网络:假新闻检测

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shubham Gupta;Abhishek Rajora;Suman Kundu
{"title":"基于证据的AMR关注网络:假新闻检测","authors":"Shubham Gupta;Abhishek Rajora;Suman Kundu","doi":"10.1109/TKDE.2025.3529707","DOIUrl":null,"url":null,"abstract":"Proliferation of fake news has become a critical issue in today's information-driven society. Our study includes external knowledge from Wikidata which allows the model to cross-reference factual claims with established knowledge. This approach deviates from the reliance on social information to detect fake news that many state-of-the-art (SOTA) fact-checking models adopt. This paper introduces <b>EA<inline-formula><tex-math>$^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic></alternatives></inline-formula>N</b>, an <b>E</b>vidence-based <b>A</b>MR (abstract meaning representation) <b>A</b>ttention <b>N</b>etwork for Fake News Detection. EA<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>N utilizes the proposed Evidence based Abstract Meaning Representation (WikiAMR) which incorporates knowledge using a proposed evidence-linking algorithm, pushing the boundaries of fake news detection. The proposed framework encompasses a combination of a novel language encoder and a graph encoder to detect fake news. While the language encoder effectively combines transformer-encoded textual features with affective lexical features, the graph encoder encodes semantic relations with evidence through external knowledge, referred to as WikiAMR graph. A path-aware graph learning module is designed to capture crucial semantic relationships among entities over evidence. Extensive experiments support our model's superior performance, surpassing SOTA methodologies with a difference of 2-3% in F1-score and accuracy for Politifact and Gossipcop datasets. The improvement due to the introduction of WikiAMR is found to be statistically significant with t-value less than 0.01.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 4","pages":"1742-1752"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EA$^{2}$2N: Evidence-Based AMR Attention Network for Fake News Detection\",\"authors\":\"Shubham Gupta;Abhishek Rajora;Suman Kundu\",\"doi\":\"10.1109/TKDE.2025.3529707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proliferation of fake news has become a critical issue in today's information-driven society. Our study includes external knowledge from Wikidata which allows the model to cross-reference factual claims with established knowledge. This approach deviates from the reliance on social information to detect fake news that many state-of-the-art (SOTA) fact-checking models adopt. This paper introduces <b>EA<inline-formula><tex-math>$^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic></alternatives></inline-formula>N</b>, an <b>E</b>vidence-based <b>A</b>MR (abstract meaning representation) <b>A</b>ttention <b>N</b>etwork for Fake News Detection. EA<inline-formula><tex-math>$^{2}$</tex-math></inline-formula>N utilizes the proposed Evidence based Abstract Meaning Representation (WikiAMR) which incorporates knowledge using a proposed evidence-linking algorithm, pushing the boundaries of fake news detection. The proposed framework encompasses a combination of a novel language encoder and a graph encoder to detect fake news. While the language encoder effectively combines transformer-encoded textual features with affective lexical features, the graph encoder encodes semantic relations with evidence through external knowledge, referred to as WikiAMR graph. A path-aware graph learning module is designed to capture crucial semantic relationships among entities over evidence. Extensive experiments support our model's superior performance, surpassing SOTA methodologies with a difference of 2-3% in F1-score and accuracy for Politifact and Gossipcop datasets. The improvement due to the introduction of WikiAMR is found to be statistically significant with t-value less than 0.01.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 4\",\"pages\":\"1742-1752\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10840323/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10840323/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在当今信息驱动的社会中,假新闻的泛滥已经成为一个关键问题。我们的研究包括来自维基数据的外部知识,这使得模型可以将事实主张与既定知识交叉引用。这种方法偏离了许多最先进的(SOTA)事实核查模型所采用的依赖社会信息来检测假新闻的方法。本文介绍了一种基于证据的AMR(抽象意义表示)关注网络EA$^{2}$2N,用于假新闻检测。EA$^{2}$N利用提出的基于证据的抽象意义表示(WikiAMR),它使用提出的证据链接算法合并知识,推动了假新闻检测的界限。提出的框架包括一个新的语言编码器和一个图形编码器的组合来检测假新闻。语言编码器有效地将转换编码的文本特征与情感词汇特征结合起来,而图编码器通过外部知识对带有证据的语义关系进行编码,称为WikiAMR图。设计了一个路径感知图学习模块,用于捕获实体之间的关键语义关系。大量的实验支持了我们的模型的卓越性能,在Politifact和gossip数据集的f1分数和准确性方面超过了SOTA方法,差异为2-3%。引入WikiAMR后的改进具有统计学意义,t值小于0.01。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EA$^{2}$2N: Evidence-Based AMR Attention Network for Fake News Detection
Proliferation of fake news has become a critical issue in today's information-driven society. Our study includes external knowledge from Wikidata which allows the model to cross-reference factual claims with established knowledge. This approach deviates from the reliance on social information to detect fake news that many state-of-the-art (SOTA) fact-checking models adopt. This paper introduces EA$^{2}$2N, an Evidence-based AMR (abstract meaning representation) Attention Network for Fake News Detection. EA$^{2}$N utilizes the proposed Evidence based Abstract Meaning Representation (WikiAMR) which incorporates knowledge using a proposed evidence-linking algorithm, pushing the boundaries of fake news detection. The proposed framework encompasses a combination of a novel language encoder and a graph encoder to detect fake news. While the language encoder effectively combines transformer-encoded textual features with affective lexical features, the graph encoder encodes semantic relations with evidence through external knowledge, referred to as WikiAMR graph. A path-aware graph learning module is designed to capture crucial semantic relationships among entities over evidence. Extensive experiments support our model's superior performance, surpassing SOTA methodologies with a difference of 2-3% in F1-score and accuracy for Politifact and Gossipcop datasets. The improvement due to the introduction of WikiAMR is found to be statistically significant with t-value less than 0.01.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信