一种比较基于云的服务缩放算法的方法

IF 5.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Danny De Vleeschauwer;Chia-Yu Chang;Paola Soto;Yorick De Bock;Miguel Camelo;Koen De Schepper
{"title":"一种比较基于云的服务缩放算法的方法","authors":"Danny De Vleeschauwer;Chia-Yu Chang;Paola Soto;Yorick De Bock;Miguel Camelo;Koen De Schepper","doi":"10.1109/TCC.2024.3500139","DOIUrl":null,"url":null,"abstract":"Nowadays, many services are offered via the cloud, i.e., they rely on interacting software components that can run on a set of connected Commercial Off-The-Shelf (COTS) servers sitting in data centers. As the demand for any particular service evolves over time, the computational resources associated with the service must be scaled accordingly while keeping the Key Performance Indicators (KPIs) associated with the service under control. Consequently, scaling always involves a delicate trade-off between using the cloud resources and complying with the KPIs. In this paper, we show that a (workload-dependent) Pareto front embodies this trade-off’s limits. We identify this Pareto front for various workloads and assess the ability of several scaling algorithms to approach that Pareto front.","PeriodicalId":13202,"journal":{"name":"IEEE Transactions on Cloud Computing","volume":"13 1","pages":"34-45"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Method to Compare Scaling Algorithms for Cloud-Based Services\",\"authors\":\"Danny De Vleeschauwer;Chia-Yu Chang;Paola Soto;Yorick De Bock;Miguel Camelo;Koen De Schepper\",\"doi\":\"10.1109/TCC.2024.3500139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, many services are offered via the cloud, i.e., they rely on interacting software components that can run on a set of connected Commercial Off-The-Shelf (COTS) servers sitting in data centers. As the demand for any particular service evolves over time, the computational resources associated with the service must be scaled accordingly while keeping the Key Performance Indicators (KPIs) associated with the service under control. Consequently, scaling always involves a delicate trade-off between using the cloud resources and complying with the KPIs. In this paper, we show that a (workload-dependent) Pareto front embodies this trade-off’s limits. We identify this Pareto front for various workloads and assess the ability of several scaling algorithms to approach that Pareto front.\",\"PeriodicalId\":13202,\"journal\":{\"name\":\"IEEE Transactions on Cloud Computing\",\"volume\":\"13 1\",\"pages\":\"34-45\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cloud Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10755966/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cloud Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10755966/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

如今,许多服务都是通过云提供的,也就是说,它们依赖于交互软件组件,这些组件可以在位于数据中心的一组连接的商用现货(COTS)服务器上运行。随着对任何特定服务的需求随着时间的推移而发展,与服务相关的计算资源必须相应地进行扩展,同时保持与服务相关的关键性能指标(kpi)处于控制之下。因此,扩展总是涉及到使用云资源和遵守kpi之间的微妙权衡。在本文中,我们展示了(工作量依赖的)帕累托前沿体现了这种权衡的局限性。我们为各种工作负载确定了这个帕累托前沿,并评估了几种缩放算法接近帕累托前沿的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Method to Compare Scaling Algorithms for Cloud-Based Services
Nowadays, many services are offered via the cloud, i.e., they rely on interacting software components that can run on a set of connected Commercial Off-The-Shelf (COTS) servers sitting in data centers. As the demand for any particular service evolves over time, the computational resources associated with the service must be scaled accordingly while keeping the Key Performance Indicators (KPIs) associated with the service under control. Consequently, scaling always involves a delicate trade-off between using the cloud resources and complying with the KPIs. In this paper, we show that a (workload-dependent) Pareto front embodies this trade-off’s limits. We identify this Pareto front for various workloads and assess the ability of several scaling algorithms to approach that Pareto front.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cloud Computing
IEEE Transactions on Cloud Computing Computer Science-Software
CiteScore
9.40
自引率
6.20%
发文量
167
期刊介绍: The IEEE Transactions on Cloud Computing (TCC) is dedicated to the multidisciplinary field of cloud computing. It is committed to the publication of articles that present innovative research ideas, application results, and case studies in cloud computing, focusing on key technical issues related to theory, algorithms, systems, applications, and performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信