心衰管理的创新:前沿生物标志物和多组学整合的作用

Jose Mesquita Bastos , Beatriz Colaço , Rui Baptista , Cristina Gavina , Rui Vitorino
{"title":"心衰管理的创新:前沿生物标志物和多组学整合的作用","authors":"Jose Mesquita Bastos ,&nbsp;Beatriz Colaço ,&nbsp;Rui Baptista ,&nbsp;Cristina Gavina ,&nbsp;Rui Vitorino","doi":"10.1016/j.jmccpl.2025.100290","DOIUrl":null,"url":null,"abstract":"<div><div>Heart failure (HF) remains a major cause of morbidity and mortality worldwide and represents a major challenge for diagnosis, prognosis and treatment due to its heterogeneity. Traditional biomarkers such as BNP and NT-proBNP are valuable but insufficient to capture the complexity of HF, especially phenotypes such as HF with preserved ejection fraction (HFpEF). Recent advances in multi-omics technology and novel biomarkers such as cell-free DNA (cfDNA), microRNAs (miRNAs), ST2 and galectin-3 offer transformative potential for HF management. This review explores the integration of these innovative biomarkers into clinical practice and highlights their benefits, such as improved diagnostic accuracy, enhanced risk stratification and non-invasive monitoring capabilities. By leveraging multi-omics approaches, including lipidomics and metabolomics, clinicians can uncover new pathways, refine the classification of HF phenotypes, and develop personalized therapeutic strategies tailored to individual patient profiles. Remarkable advances in proteomics and metabolomics have identified biomarkers associated with key HF mechanisms such as mitochondrial dysfunction, inflammation and fibrosis, paving the way for targeted therapies and early interventions. Despite the promising results, significant challenges remain in translating these findings into routine care, including high costs, technical limitations and the need for large-scale validation studies. This report argues for an integrative, multi-omics-based model to overcome these obstacles and emphasizes the importance of collaboration between researchers, clinicians and policy makers. By linking innovative science with practical applications, multi-omics approaches have the potential to redefine HF management and lead to better patient outcomes and more sustainable healthcare systems.</div></div>","PeriodicalId":73835,"journal":{"name":"Journal of molecular and cellular cardiology plus","volume":"11 ","pages":"Article 100290"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovations in heart failure management: The role of cutting-edge biomarkers and multi-omics integration\",\"authors\":\"Jose Mesquita Bastos ,&nbsp;Beatriz Colaço ,&nbsp;Rui Baptista ,&nbsp;Cristina Gavina ,&nbsp;Rui Vitorino\",\"doi\":\"10.1016/j.jmccpl.2025.100290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heart failure (HF) remains a major cause of morbidity and mortality worldwide and represents a major challenge for diagnosis, prognosis and treatment due to its heterogeneity. Traditional biomarkers such as BNP and NT-proBNP are valuable but insufficient to capture the complexity of HF, especially phenotypes such as HF with preserved ejection fraction (HFpEF). Recent advances in multi-omics technology and novel biomarkers such as cell-free DNA (cfDNA), microRNAs (miRNAs), ST2 and galectin-3 offer transformative potential for HF management. This review explores the integration of these innovative biomarkers into clinical practice and highlights their benefits, such as improved diagnostic accuracy, enhanced risk stratification and non-invasive monitoring capabilities. By leveraging multi-omics approaches, including lipidomics and metabolomics, clinicians can uncover new pathways, refine the classification of HF phenotypes, and develop personalized therapeutic strategies tailored to individual patient profiles. Remarkable advances in proteomics and metabolomics have identified biomarkers associated with key HF mechanisms such as mitochondrial dysfunction, inflammation and fibrosis, paving the way for targeted therapies and early interventions. Despite the promising results, significant challenges remain in translating these findings into routine care, including high costs, technical limitations and the need for large-scale validation studies. This report argues for an integrative, multi-omics-based model to overcome these obstacles and emphasizes the importance of collaboration between researchers, clinicians and policy makers. By linking innovative science with practical applications, multi-omics approaches have the potential to redefine HF management and lead to better patient outcomes and more sustainable healthcare systems.</div></div>\",\"PeriodicalId\":73835,\"journal\":{\"name\":\"Journal of molecular and cellular cardiology plus\",\"volume\":\"11 \",\"pages\":\"Article 100290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular and cellular cardiology plus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772976125000091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772976125000091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovations in heart failure management: The role of cutting-edge biomarkers and multi-omics integration
Heart failure (HF) remains a major cause of morbidity and mortality worldwide and represents a major challenge for diagnosis, prognosis and treatment due to its heterogeneity. Traditional biomarkers such as BNP and NT-proBNP are valuable but insufficient to capture the complexity of HF, especially phenotypes such as HF with preserved ejection fraction (HFpEF). Recent advances in multi-omics technology and novel biomarkers such as cell-free DNA (cfDNA), microRNAs (miRNAs), ST2 and galectin-3 offer transformative potential for HF management. This review explores the integration of these innovative biomarkers into clinical practice and highlights their benefits, such as improved diagnostic accuracy, enhanced risk stratification and non-invasive monitoring capabilities. By leveraging multi-omics approaches, including lipidomics and metabolomics, clinicians can uncover new pathways, refine the classification of HF phenotypes, and develop personalized therapeutic strategies tailored to individual patient profiles. Remarkable advances in proteomics and metabolomics have identified biomarkers associated with key HF mechanisms such as mitochondrial dysfunction, inflammation and fibrosis, paving the way for targeted therapies and early interventions. Despite the promising results, significant challenges remain in translating these findings into routine care, including high costs, technical limitations and the need for large-scale validation studies. This report argues for an integrative, multi-omics-based model to overcome these obstacles and emphasizes the importance of collaboration between researchers, clinicians and policy makers. By linking innovative science with practical applications, multi-omics approaches have the potential to redefine HF management and lead to better patient outcomes and more sustainable healthcare systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular and cellular cardiology plus
Journal of molecular and cellular cardiology plus Cardiology and Cardiovascular Medicine
自引率
0.00%
发文量
0
审稿时长
31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信