{"title":"基于摄动决策的战略储能建模","authors":"Ming Yi;Saud Alghumayjan;Bolun Xu","doi":"10.1109/TSG.2025.3548009","DOIUrl":null,"url":null,"abstract":"This paper presents a novel decision-focused framework integrating the physical energy storage model into machine learning pipelines. Motivated by the model predictive control for energy storage, our end-to-end method incorporates the prior knowledge of the storage model and infers the hidden reward that incentivizes energy storage decisions. This is achieved through a dual-layer framework, combining a prediction layer with an optimization layer. We introduce the perturbation idea into the designed decision-focused loss function to ensure the differentiability over linear storage models, supported by a theoretical analysis of the perturbed loss function. We also develop a hybrid loss function for effective model training. We provide two challenging applications for our proposed framework: energy storage arbitrage, and energy storage behavior prediction. The numerical experiments on real price data demonstrate that our arbitrage approach achieves the highest profit against existing methods. The numerical experiments on synthetic and real-world energy storage data show that our approach achieves the best behavior prediction performance against existing benchmark methods, which shows the effectiveness of our method.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 3","pages":"2574-2586"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perturbed Decision-Focused Learning for Modeling Strategic Energy Storage\",\"authors\":\"Ming Yi;Saud Alghumayjan;Bolun Xu\",\"doi\":\"10.1109/TSG.2025.3548009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel decision-focused framework integrating the physical energy storage model into machine learning pipelines. Motivated by the model predictive control for energy storage, our end-to-end method incorporates the prior knowledge of the storage model and infers the hidden reward that incentivizes energy storage decisions. This is achieved through a dual-layer framework, combining a prediction layer with an optimization layer. We introduce the perturbation idea into the designed decision-focused loss function to ensure the differentiability over linear storage models, supported by a theoretical analysis of the perturbed loss function. We also develop a hybrid loss function for effective model training. We provide two challenging applications for our proposed framework: energy storage arbitrage, and energy storage behavior prediction. The numerical experiments on real price data demonstrate that our arbitrage approach achieves the highest profit against existing methods. The numerical experiments on synthetic and real-world energy storage data show that our approach achieves the best behavior prediction performance against existing benchmark methods, which shows the effectiveness of our method.\",\"PeriodicalId\":13331,\"journal\":{\"name\":\"IEEE Transactions on Smart Grid\",\"volume\":\"16 3\",\"pages\":\"2574-2586\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Smart Grid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10915559/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10915559/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Perturbed Decision-Focused Learning for Modeling Strategic Energy Storage
This paper presents a novel decision-focused framework integrating the physical energy storage model into machine learning pipelines. Motivated by the model predictive control for energy storage, our end-to-end method incorporates the prior knowledge of the storage model and infers the hidden reward that incentivizes energy storage decisions. This is achieved through a dual-layer framework, combining a prediction layer with an optimization layer. We introduce the perturbation idea into the designed decision-focused loss function to ensure the differentiability over linear storage models, supported by a theoretical analysis of the perturbed loss function. We also develop a hybrid loss function for effective model training. We provide two challenging applications for our proposed framework: energy storage arbitrage, and energy storage behavior prediction. The numerical experiments on real price data demonstrate that our arbitrage approach achieves the highest profit against existing methods. The numerical experiments on synthetic and real-world energy storage data show that our approach achieves the best behavior prediction performance against existing benchmark methods, which shows the effectiveness of our method.
期刊介绍:
The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.