{"title":"由笛卡尔积集确定的钉住角数的下界","authors":"Oliver Roche-Newton","doi":"10.1007/s00493-025-00135-5","DOIUrl":null,"url":null,"abstract":"<p>We prove that, for any <span>\\(B \\subset {\\mathbb {R}}\\)</span>, the Cartesian product set <span>\\(B \\times B\\)</span> determines <span>\\(\\Omega (|B|^{2+c})\\)</span> distinct angles.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"53 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lower Bound for the Number of Pinned Angles Determined by a Cartesian Product Set\",\"authors\":\"Oliver Roche-Newton\",\"doi\":\"10.1007/s00493-025-00135-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that, for any <span>\\\\(B \\\\subset {\\\\mathbb {R}}\\\\)</span>, the Cartesian product set <span>\\\\(B \\\\times B\\\\)</span> determines <span>\\\\(\\\\Omega (|B|^{2+c})\\\\)</span> distinct angles.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00135-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00135-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.