基于全多速率线性高斯状态空间模型的动态过程监控

IF 11.7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Donglei Zheng;Le Zhou;Yi Liu;Qiang Liu
{"title":"基于全多速率线性高斯状态空间模型的动态过程监控","authors":"Donglei Zheng;Le Zhou;Yi Liu;Qiang Liu","doi":"10.1109/TII.2024.3523560","DOIUrl":null,"url":null,"abstract":"Conventional data-driven dynamic process monitoring methods usually rely on data collected at a single sampling rate. The effectiveness of these approaches typically diminishes when analyzing data from multiple sampling rates. To address this gap, this article introduces a new total multirate linear Gaussian state space model. This model is designed for modeling and monitoring in dynamic processes that involve data from various sampling rates. It works by establishing global dynamic latent variables that span across process variables and extracting local static latent variables for each sampling rate. For effective fault detection at different sampling rates, the model incorporates three kinds of statistics. The effectiveness of the proposed method in process monitoring is validated using the multiphase flow facility benchmark and a real papermaking wastewater treatment process.","PeriodicalId":13301,"journal":{"name":"IEEE Transactions on Industrial Informatics","volume":"21 6","pages":"4306-4315"},"PeriodicalIF":11.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Process Monitoring Using Total Multirate Linear Gaussian State Space Model\",\"authors\":\"Donglei Zheng;Le Zhou;Yi Liu;Qiang Liu\",\"doi\":\"10.1109/TII.2024.3523560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional data-driven dynamic process monitoring methods usually rely on data collected at a single sampling rate. The effectiveness of these approaches typically diminishes when analyzing data from multiple sampling rates. To address this gap, this article introduces a new total multirate linear Gaussian state space model. This model is designed for modeling and monitoring in dynamic processes that involve data from various sampling rates. It works by establishing global dynamic latent variables that span across process variables and extracting local static latent variables for each sampling rate. For effective fault detection at different sampling rates, the model incorporates three kinds of statistics. The effectiveness of the proposed method in process monitoring is validated using the multiphase flow facility benchmark and a real papermaking wastewater treatment process.\",\"PeriodicalId\":13301,\"journal\":{\"name\":\"IEEE Transactions on Industrial Informatics\",\"volume\":\"21 6\",\"pages\":\"4306-4315\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10912639/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Informatics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10912639/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

传统的数据驱动动态过程监测方法通常依赖于以单一采样率收集的数据。当分析来自多个采样率的数据时,这些方法的有效性通常会降低。为了解决这一问题,本文引入了一种新的全多速率线性高斯状态空间模型。该模型用于在涉及不同采样率数据的动态过程中进行建模和监控。它的工作原理是建立跨越过程变量的全局动态潜在变量,并为每个采样率提取局部静态潜在变量。为了在不同采样率下进行有效的故障检测,该模型结合了三种统计量。通过多相流装置基准和造纸废水实际处理过程验证了该方法在过程监控中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Process Monitoring Using Total Multirate Linear Gaussian State Space Model
Conventional data-driven dynamic process monitoring methods usually rely on data collected at a single sampling rate. The effectiveness of these approaches typically diminishes when analyzing data from multiple sampling rates. To address this gap, this article introduces a new total multirate linear Gaussian state space model. This model is designed for modeling and monitoring in dynamic processes that involve data from various sampling rates. It works by establishing global dynamic latent variables that span across process variables and extracting local static latent variables for each sampling rate. For effective fault detection at different sampling rates, the model incorporates three kinds of statistics. The effectiveness of the proposed method in process monitoring is validated using the multiphase flow facility benchmark and a real papermaking wastewater treatment process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Industrial Informatics
IEEE Transactions on Industrial Informatics 工程技术-工程:工业
CiteScore
24.10
自引率
8.90%
发文量
1202
审稿时长
5.1 months
期刊介绍: The IEEE Transactions on Industrial Informatics is a multidisciplinary journal dedicated to publishing technical papers that connect theory with practical applications of informatics in industrial settings. It focuses on the utilization of information in intelligent, distributed, and agile industrial automation and control systems. The scope includes topics such as knowledge-based and AI-enhanced automation, intelligent computer control systems, flexible and collaborative manufacturing, industrial informatics in software-defined vehicles and robotics, computer vision, industrial cyber-physical and industrial IoT systems, real-time and networked embedded systems, security in industrial processes, industrial communications, systems interoperability, and human-machine interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信