用户自写文本中心理概念提取与分类的信度分析。

Muskan Garg, Msvpj Sathvik, Shaina Raza, Amrit Chadha, Sunghwan Sohn
{"title":"用户自写文本中心理概念提取与分类的信度分析。","authors":"Muskan Garg, Msvpj Sathvik, Shaina Raza, Amrit Chadha, Sunghwan Sohn","doi":"10.1609/icwsm.v18i1.31324","DOIUrl":null,"url":null,"abstract":"<p><p>The social NLP research community witness a recent surge in the computational advancements of mental health analysis to build responsible AI models for a complex interplay between language use and self-perception. Such responsible AI models aid in quantifying the psychological concepts from user-penned texts on social media. On thinking beyond the low-level (<i>classification</i>) task, we advance the existing binary classification dataset, towards a higher-level task of reliability analysis through the lens of explanations, posing it as one of the safety measures. We annotate the <i>LoST</i> dataset to capture nuanced textual cues that suggest the presence of low self-esteem in the posts of Reddit users. We further state that the NLP models developed for determining the presence of low self-esteem, focus more on three types of textual cues: (i) <i>Trigger</i>: words that triggers mental disturbance, (ii) <i>LoST indicators</i>: text indicators emphasizing low self-esteem, and (iii) <i>Consequences</i>: words describing the consequences of mental disturbance. We implement existing classifiers to examine the attention mechanism in pre-trained language models (PLMs) for a domain-specific psychology-grounded task. Our findings suggest the need of shifting the focus of PLMs from <i>Trigger</i> and <i>Consequences</i> to a more comprehensive explanation, emphasizing <i>LoST indicators</i> while determining low self-esteem in Reddit posts.</p>","PeriodicalId":74525,"journal":{"name":"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media","volume":"18 ","pages":"422-434"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881108/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reliability Analysis of Psychological Concept Extraction and Classification in User-penned Text.\",\"authors\":\"Muskan Garg, Msvpj Sathvik, Shaina Raza, Amrit Chadha, Sunghwan Sohn\",\"doi\":\"10.1609/icwsm.v18i1.31324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The social NLP research community witness a recent surge in the computational advancements of mental health analysis to build responsible AI models for a complex interplay between language use and self-perception. Such responsible AI models aid in quantifying the psychological concepts from user-penned texts on social media. On thinking beyond the low-level (<i>classification</i>) task, we advance the existing binary classification dataset, towards a higher-level task of reliability analysis through the lens of explanations, posing it as one of the safety measures. We annotate the <i>LoST</i> dataset to capture nuanced textual cues that suggest the presence of low self-esteem in the posts of Reddit users. We further state that the NLP models developed for determining the presence of low self-esteem, focus more on three types of textual cues: (i) <i>Trigger</i>: words that triggers mental disturbance, (ii) <i>LoST indicators</i>: text indicators emphasizing low self-esteem, and (iii) <i>Consequences</i>: words describing the consequences of mental disturbance. We implement existing classifiers to examine the attention mechanism in pre-trained language models (PLMs) for a domain-specific psychology-grounded task. Our findings suggest the need of shifting the focus of PLMs from <i>Trigger</i> and <i>Consequences</i> to a more comprehensive explanation, emphasizing <i>LoST indicators</i> while determining low self-esteem in Reddit posts.</p>\",\"PeriodicalId\":74525,\"journal\":{\"name\":\"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media\",\"volume\":\"18 \",\"pages\":\"422-434\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881108/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icwsm.v18i1.31324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International AAAI Conference on Weblogs and Social Media. International AAAI Conference on Weblogs and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icwsm.v18i1.31324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社会NLP研究界最近见证了心理健康分析的计算进步,为语言使用和自我感知之间的复杂相互作用建立负责任的人工智能模型。这种负责任的人工智能模型有助于量化社交媒体上用户撰写的文本中的心理概念。在超越低级(分类)任务的思考上,我们通过解释的视角,将现有的二元分类数据集推进到更高层次的可靠性分析任务,并将其作为安全措施之一。我们对LoST数据集进行了注释,以捕捉细微的文本线索,这些线索表明Reddit用户的帖子中存在低自尊。我们进一步指出,为确定低自尊的存在而开发的NLP模型更多地关注三种类型的文本线索:(i)触发:触发精神障碍的词语;(ii)丢失的指标:强调低自尊的文本指标;(iii)后果:描述精神障碍后果的词语。我们实现了现有的分类器来检查预训练语言模型(PLMs)中特定领域心理学基础任务的注意机制。我们的研究结果表明,需要将plm的重点从触发和后果转移到更全面的解释上,强调LoST指标,同时确定Reddit帖子中的低自尊。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliability Analysis of Psychological Concept Extraction and Classification in User-penned Text.

The social NLP research community witness a recent surge in the computational advancements of mental health analysis to build responsible AI models for a complex interplay between language use and self-perception. Such responsible AI models aid in quantifying the psychological concepts from user-penned texts on social media. On thinking beyond the low-level (classification) task, we advance the existing binary classification dataset, towards a higher-level task of reliability analysis through the lens of explanations, posing it as one of the safety measures. We annotate the LoST dataset to capture nuanced textual cues that suggest the presence of low self-esteem in the posts of Reddit users. We further state that the NLP models developed for determining the presence of low self-esteem, focus more on three types of textual cues: (i) Trigger: words that triggers mental disturbance, (ii) LoST indicators: text indicators emphasizing low self-esteem, and (iii) Consequences: words describing the consequences of mental disturbance. We implement existing classifiers to examine the attention mechanism in pre-trained language models (PLMs) for a domain-specific psychology-grounded task. Our findings suggest the need of shifting the focus of PLMs from Trigger and Consequences to a more comprehensive explanation, emphasizing LoST indicators while determining low self-esteem in Reddit posts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信