采用混合深度迁移学习的新一代皮肤病预测方法。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI:10.3389/fdata.2025.1503883
Yonis Gulzar, Shivani Agarwal, Saira Soomro, Meenakshi Kandpal, Sherzod Turaev, Choo W Onn, Shilpa Saini, Abdenour Bounsiar
{"title":"采用混合深度迁移学习的新一代皮肤病预测方法。","authors":"Yonis Gulzar, Shivani Agarwal, Saira Soomro, Meenakshi Kandpal, Sherzod Turaev, Choo W Onn, Shilpa Saini, Abdenour Bounsiar","doi":"10.3389/fdata.2025.1503883","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Skin diseases significantly impact individuals' health and mental wellbeing. However, their classification remains challenging due to complex lesion characteristics, overlapping symptoms, and limited annotated datasets. Traditional convolutional neural networks (CNNs) often struggle with generalization, leading to suboptimal classification performance. To address these challenges, this study proposes a Hybrid Deep Transfer Learning Method (HDTLM) that integrates DenseNet121 and EfficientNetB0 for improved skin disease prediction.</p><p><strong>Methods: </strong>The proposed hybrid model leverages DenseNet121's dense connectivity for capturing intricate patterns and EfficientNetB0's computational efficiency and scalability. A dataset comprising 19 skin conditions with 19,171 images was used for training and validation. The model was evaluated using multiple performance metrics, including accuracy, precision, recall, and F1-score. Additionally, a comparative analysis was conducted against state-of-the-art models such as DenseNet121, EfficientNetB0, VGG19, MobileNetV2, and AlexNet.</p><p><strong>Results: </strong>The proposed HDTLM achieved a training accuracy of 98.18% and a validation accuracy of 97.57%. It consistently outperformed baseline models, achieving a precision of 0.95, recall of 0.96, F1-score of 0.95, and an overall accuracy of 98.18%. The results demonstrate the hybrid model's superior ability to generalize across diverse skin disease categories.</p><p><strong>Discussion: </strong>The findings underscore the effectiveness of the HDTLM in enhancing skin disease classification, particularly in scenarios with significant domain shifts and limited labeled data. By integrating complementary strengths of DenseNet121 and EfficientNetB0, the proposed model provides a robust and scalable solution for automated dermatological diagnostics.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"8 ","pages":"1503883"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879938/pdf/","citationCount":"0","resultStr":"{\"title\":\"Next-generation approach to skin disorder prediction employing hybrid deep transfer learning.\",\"authors\":\"Yonis Gulzar, Shivani Agarwal, Saira Soomro, Meenakshi Kandpal, Sherzod Turaev, Choo W Onn, Shilpa Saini, Abdenour Bounsiar\",\"doi\":\"10.3389/fdata.2025.1503883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Skin diseases significantly impact individuals' health and mental wellbeing. However, their classification remains challenging due to complex lesion characteristics, overlapping symptoms, and limited annotated datasets. Traditional convolutional neural networks (CNNs) often struggle with generalization, leading to suboptimal classification performance. To address these challenges, this study proposes a Hybrid Deep Transfer Learning Method (HDTLM) that integrates DenseNet121 and EfficientNetB0 for improved skin disease prediction.</p><p><strong>Methods: </strong>The proposed hybrid model leverages DenseNet121's dense connectivity for capturing intricate patterns and EfficientNetB0's computational efficiency and scalability. A dataset comprising 19 skin conditions with 19,171 images was used for training and validation. The model was evaluated using multiple performance metrics, including accuracy, precision, recall, and F1-score. Additionally, a comparative analysis was conducted against state-of-the-art models such as DenseNet121, EfficientNetB0, VGG19, MobileNetV2, and AlexNet.</p><p><strong>Results: </strong>The proposed HDTLM achieved a training accuracy of 98.18% and a validation accuracy of 97.57%. It consistently outperformed baseline models, achieving a precision of 0.95, recall of 0.96, F1-score of 0.95, and an overall accuracy of 98.18%. The results demonstrate the hybrid model's superior ability to generalize across diverse skin disease categories.</p><p><strong>Discussion: </strong>The findings underscore the effectiveness of the HDTLM in enhancing skin disease classification, particularly in scenarios with significant domain shifts and limited labeled data. By integrating complementary strengths of DenseNet121 and EfficientNetB0, the proposed model provides a robust and scalable solution for automated dermatological diagnostics.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"8 \",\"pages\":\"1503883\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879938/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2025.1503883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2025.1503883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next-generation approach to skin disorder prediction employing hybrid deep transfer learning.

Introduction: Skin diseases significantly impact individuals' health and mental wellbeing. However, their classification remains challenging due to complex lesion characteristics, overlapping symptoms, and limited annotated datasets. Traditional convolutional neural networks (CNNs) often struggle with generalization, leading to suboptimal classification performance. To address these challenges, this study proposes a Hybrid Deep Transfer Learning Method (HDTLM) that integrates DenseNet121 and EfficientNetB0 for improved skin disease prediction.

Methods: The proposed hybrid model leverages DenseNet121's dense connectivity for capturing intricate patterns and EfficientNetB0's computational efficiency and scalability. A dataset comprising 19 skin conditions with 19,171 images was used for training and validation. The model was evaluated using multiple performance metrics, including accuracy, precision, recall, and F1-score. Additionally, a comparative analysis was conducted against state-of-the-art models such as DenseNet121, EfficientNetB0, VGG19, MobileNetV2, and AlexNet.

Results: The proposed HDTLM achieved a training accuracy of 98.18% and a validation accuracy of 97.57%. It consistently outperformed baseline models, achieving a precision of 0.95, recall of 0.96, F1-score of 0.95, and an overall accuracy of 98.18%. The results demonstrate the hybrid model's superior ability to generalize across diverse skin disease categories.

Discussion: The findings underscore the effectiveness of the HDTLM in enhancing skin disease classification, particularly in scenarios with significant domain shifts and limited labeled data. By integrating complementary strengths of DenseNet121 and EfficientNetB0, the proposed model provides a robust and scalable solution for automated dermatological diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信