采用混合深度迁移学习的新一代皮肤病预测方法。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2025-02-19 eCollection Date: 2025-01-01 DOI:10.3389/fdata.2025.1503883
Yonis Gulzar, Shivani Agarwal, Saira Soomro, Meenakshi Kandpal, Sherzod Turaev, Choo W Onn, Shilpa Saini, Abdenour Bounsiar
{"title":"采用混合深度迁移学习的新一代皮肤病预测方法。","authors":"Yonis Gulzar, Shivani Agarwal, Saira Soomro, Meenakshi Kandpal, Sherzod Turaev, Choo W Onn, Shilpa Saini, Abdenour Bounsiar","doi":"10.3389/fdata.2025.1503883","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Skin diseases significantly impact individuals' health and mental wellbeing. However, their classification remains challenging due to complex lesion characteristics, overlapping symptoms, and limited annotated datasets. Traditional convolutional neural networks (CNNs) often struggle with generalization, leading to suboptimal classification performance. To address these challenges, this study proposes a Hybrid Deep Transfer Learning Method (HDTLM) that integrates DenseNet121 and EfficientNetB0 for improved skin disease prediction.</p><p><strong>Methods: </strong>The proposed hybrid model leverages DenseNet121's dense connectivity for capturing intricate patterns and EfficientNetB0's computational efficiency and scalability. A dataset comprising 19 skin conditions with 19,171 images was used for training and validation. The model was evaluated using multiple performance metrics, including accuracy, precision, recall, and F1-score. Additionally, a comparative analysis was conducted against state-of-the-art models such as DenseNet121, EfficientNetB0, VGG19, MobileNetV2, and AlexNet.</p><p><strong>Results: </strong>The proposed HDTLM achieved a training accuracy of 98.18% and a validation accuracy of 97.57%. It consistently outperformed baseline models, achieving a precision of 0.95, recall of 0.96, F1-score of 0.95, and an overall accuracy of 98.18%. The results demonstrate the hybrid model's superior ability to generalize across diverse skin disease categories.</p><p><strong>Discussion: </strong>The findings underscore the effectiveness of the HDTLM in enhancing skin disease classification, particularly in scenarios with significant domain shifts and limited labeled data. By integrating complementary strengths of DenseNet121 and EfficientNetB0, the proposed model provides a robust and scalable solution for automated dermatological diagnostics.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"8 ","pages":"1503883"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879938/pdf/","citationCount":"0","resultStr":"{\"title\":\"Next-generation approach to skin disorder prediction employing hybrid deep transfer learning.\",\"authors\":\"Yonis Gulzar, Shivani Agarwal, Saira Soomro, Meenakshi Kandpal, Sherzod Turaev, Choo W Onn, Shilpa Saini, Abdenour Bounsiar\",\"doi\":\"10.3389/fdata.2025.1503883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Skin diseases significantly impact individuals' health and mental wellbeing. However, their classification remains challenging due to complex lesion characteristics, overlapping symptoms, and limited annotated datasets. Traditional convolutional neural networks (CNNs) often struggle with generalization, leading to suboptimal classification performance. To address these challenges, this study proposes a Hybrid Deep Transfer Learning Method (HDTLM) that integrates DenseNet121 and EfficientNetB0 for improved skin disease prediction.</p><p><strong>Methods: </strong>The proposed hybrid model leverages DenseNet121's dense connectivity for capturing intricate patterns and EfficientNetB0's computational efficiency and scalability. A dataset comprising 19 skin conditions with 19,171 images was used for training and validation. The model was evaluated using multiple performance metrics, including accuracy, precision, recall, and F1-score. Additionally, a comparative analysis was conducted against state-of-the-art models such as DenseNet121, EfficientNetB0, VGG19, MobileNetV2, and AlexNet.</p><p><strong>Results: </strong>The proposed HDTLM achieved a training accuracy of 98.18% and a validation accuracy of 97.57%. It consistently outperformed baseline models, achieving a precision of 0.95, recall of 0.96, F1-score of 0.95, and an overall accuracy of 98.18%. The results demonstrate the hybrid model's superior ability to generalize across diverse skin disease categories.</p><p><strong>Discussion: </strong>The findings underscore the effectiveness of the HDTLM in enhancing skin disease classification, particularly in scenarios with significant domain shifts and limited labeled data. By integrating complementary strengths of DenseNet121 and EfficientNetB0, the proposed model provides a robust and scalable solution for automated dermatological diagnostics.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"8 \",\"pages\":\"1503883\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879938/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2025.1503883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2025.1503883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

简介:皮肤病对个人健康和心理健康有显著影响。然而,由于复杂的病变特征、重叠的症状和有限的注释数据集,它们的分类仍然具有挑战性。传统的卷积神经网络(cnn)经常在泛化方面遇到困难,导致分类性能不佳。为了解决这些挑战,本研究提出了一种混合深度迁移学习方法(HDTLM),该方法集成了DenseNet121和EfficientNetB0,以改进皮肤病预测。方法:提出的混合模型利用了DenseNet121的密集连接来捕获复杂的模式和EfficientNetB0的计算效率和可扩展性。使用包含19种皮肤状况和19171张图像的数据集进行训练和验证。该模型使用多个性能指标进行评估,包括准确性、精密度、召回率和f1评分。此外,还与DenseNet121、EfficientNetB0、VGG19、MobileNetV2和AlexNet等最先进的模型进行了比较分析。结果:HDTLM的训练准确率为98.18%,验证准确率为97.57%。它始终优于基线模型,达到了0.95的精度,0.96的召回率,f1得分0.95,和98.18%的总体准确率。结果表明,混合模型在不同皮肤疾病类别中具有卓越的泛化能力。讨论:研究结果强调了HDTLM在增强皮肤病分类方面的有效性,特别是在显著的区域转移和有限的标记数据的情况下。通过整合DenseNet121和EfficientNetB0的互补优势,所提出的模型为自动皮肤病诊断提供了一个强大且可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next-generation approach to skin disorder prediction employing hybrid deep transfer learning.

Introduction: Skin diseases significantly impact individuals' health and mental wellbeing. However, their classification remains challenging due to complex lesion characteristics, overlapping symptoms, and limited annotated datasets. Traditional convolutional neural networks (CNNs) often struggle with generalization, leading to suboptimal classification performance. To address these challenges, this study proposes a Hybrid Deep Transfer Learning Method (HDTLM) that integrates DenseNet121 and EfficientNetB0 for improved skin disease prediction.

Methods: The proposed hybrid model leverages DenseNet121's dense connectivity for capturing intricate patterns and EfficientNetB0's computational efficiency and scalability. A dataset comprising 19 skin conditions with 19,171 images was used for training and validation. The model was evaluated using multiple performance metrics, including accuracy, precision, recall, and F1-score. Additionally, a comparative analysis was conducted against state-of-the-art models such as DenseNet121, EfficientNetB0, VGG19, MobileNetV2, and AlexNet.

Results: The proposed HDTLM achieved a training accuracy of 98.18% and a validation accuracy of 97.57%. It consistently outperformed baseline models, achieving a precision of 0.95, recall of 0.96, F1-score of 0.95, and an overall accuracy of 98.18%. The results demonstrate the hybrid model's superior ability to generalize across diverse skin disease categories.

Discussion: The findings underscore the effectiveness of the HDTLM in enhancing skin disease classification, particularly in scenarios with significant domain shifts and limited labeled data. By integrating complementary strengths of DenseNet121 and EfficientNetB0, the proposed model provides a robust and scalable solution for automated dermatological diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信