基于电子健康记录的儿童急性呼吸窘迫综合征亚表型分类模型的开发和验证。

IF 4 2区 医学 Q1 CRITICAL CARE MEDICINE
Pediatric Critical Care Medicine Pub Date : 2025-05-01 Epub Date: 2025-03-06 DOI:10.1097/PCC.0000000000003709
Daniel R Balcarcel, Mark V Mai, Sanjiv D Mehta, Kathleen Chiotos, L Nelson Sanchez-Pinto, Blanca E Himes, Nadir Yehya
{"title":"基于电子健康记录的儿童急性呼吸窘迫综合征亚表型分类模型的开发和验证。","authors":"Daniel R Balcarcel, Mark V Mai, Sanjiv D Mehta, Kathleen Chiotos, L Nelson Sanchez-Pinto, Blanca E Himes, Nadir Yehya","doi":"10.1097/PCC.0000000000003709","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To determine if hyperinflammatory and hypoinflammatory pediatric acute respiratory distress syndrome (PARDS) subphenotypes defined using serum biomarkers can be determined solely from electronic health record (EHR) data using machine learning.</p><p><strong>Design: </strong>Retrospective, exploratory analysis using data from 2014 to 2022.</p><p><strong>Setting: </strong>Single-center quaternary care PICU.</p><p><strong>Patients: </strong>Two temporally distinct cohorts of PARDS patients, 2014-2019 and 2019-2022.</p><p><strong>Interventions: </strong>None.</p><p><strong>Measurements and main results: </strong>Patients in the derivation cohort ( n = 333) were assigned to hyperinflammatory or hypoinflammatory subphenotypes using biomarkers and latent class analysis. A machine learning model was trained on 165 EHR-derived variables to identify subphenotypes. The most important variables were selected for inclusion in a parsimonious model. The model was validated in a separate cohort ( n = 114). The EHR-based classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.93 (95% CI, 0.87-0.98), with a sensitivity of 88% and specificity of 83% for determining hyperinflammatory PARDS. The parsimonious model, using only five laboratory values, achieved an AUC of 0.92 (95% CI, 0.86-0.98) with a sensitivity of 76% and specificity of 87% in the validation cohort.</p><p><strong>Conclusions: </strong>This proof-of-concept study demonstrates that biomarker-based PARDS subphenotypes can be identified using EHR data at 24 hours of PARDS diagnosis. Further validation in larger, multicenter cohorts is needed to confirm the clinical utility of this approach.</p>","PeriodicalId":19760,"journal":{"name":"Pediatric Critical Care Medicine","volume":" ","pages":"e611-e621"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061561/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of an Electronic Health Record-Based, Pediatric Acute Respiratory Distress Syndrome Subphenotype Classifier Model.\",\"authors\":\"Daniel R Balcarcel, Mark V Mai, Sanjiv D Mehta, Kathleen Chiotos, L Nelson Sanchez-Pinto, Blanca E Himes, Nadir Yehya\",\"doi\":\"10.1097/PCC.0000000000003709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To determine if hyperinflammatory and hypoinflammatory pediatric acute respiratory distress syndrome (PARDS) subphenotypes defined using serum biomarkers can be determined solely from electronic health record (EHR) data using machine learning.</p><p><strong>Design: </strong>Retrospective, exploratory analysis using data from 2014 to 2022.</p><p><strong>Setting: </strong>Single-center quaternary care PICU.</p><p><strong>Patients: </strong>Two temporally distinct cohorts of PARDS patients, 2014-2019 and 2019-2022.</p><p><strong>Interventions: </strong>None.</p><p><strong>Measurements and main results: </strong>Patients in the derivation cohort ( n = 333) were assigned to hyperinflammatory or hypoinflammatory subphenotypes using biomarkers and latent class analysis. A machine learning model was trained on 165 EHR-derived variables to identify subphenotypes. The most important variables were selected for inclusion in a parsimonious model. The model was validated in a separate cohort ( n = 114). The EHR-based classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.93 (95% CI, 0.87-0.98), with a sensitivity of 88% and specificity of 83% for determining hyperinflammatory PARDS. The parsimonious model, using only five laboratory values, achieved an AUC of 0.92 (95% CI, 0.86-0.98) with a sensitivity of 76% and specificity of 87% in the validation cohort.</p><p><strong>Conclusions: </strong>This proof-of-concept study demonstrates that biomarker-based PARDS subphenotypes can be identified using EHR data at 24 hours of PARDS diagnosis. Further validation in larger, multicenter cohorts is needed to confirm the clinical utility of this approach.</p>\",\"PeriodicalId\":19760,\"journal\":{\"name\":\"Pediatric Critical Care Medicine\",\"volume\":\" \",\"pages\":\"e611-e621\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12061561/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pediatric Critical Care Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/PCC.0000000000003709\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Critical Care Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/PCC.0000000000003709","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:确定使用血清生物标志物定义的儿童急性呼吸窘迫综合征(PARDS)亚表型是否可以仅通过使用机器学习的电子健康记录(EHR)数据确定。设计:回顾性、探索性分析,使用2014年至2022年的数据。环境:单中心第四护理PICU。患者:2014-2019年和2019-2022年两个时间上不同的PARDS患者队列。干预措施:没有。测量和主要结果:衍生队列中的患者(n = 333)通过生物标志物和潜在分类分析被划分为高炎症或低炎症亚表型。在165个ehr衍生变量上训练机器学习模型以识别亚表型。选择最重要的变量纳入一个简约模型。该模型在一个单独的队列中得到验证(n = 114)。基于ehr的分类器在受试者工作特征曲线下的面积(AUC)为0.93 (95% CI, 0.87-0.98),用于判断高炎症性PARDS的敏感性为88%,特异性为83%。在验证队列中,仅使用5个实验室值的简约模型的AUC为0.92 (95% CI, 0.86-0.98),灵敏度为76%,特异性为87%。结论:这项概念验证性研究表明,基于生物标志物的PARDS亚表型可以在PARDS诊断后24小时使用电子病历数据进行识别。需要在更大的多中心队列中进一步验证,以确认该方法的临床实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Validation of an Electronic Health Record-Based, Pediatric Acute Respiratory Distress Syndrome Subphenotype Classifier Model.

Objective: To determine if hyperinflammatory and hypoinflammatory pediatric acute respiratory distress syndrome (PARDS) subphenotypes defined using serum biomarkers can be determined solely from electronic health record (EHR) data using machine learning.

Design: Retrospective, exploratory analysis using data from 2014 to 2022.

Setting: Single-center quaternary care PICU.

Patients: Two temporally distinct cohorts of PARDS patients, 2014-2019 and 2019-2022.

Interventions: None.

Measurements and main results: Patients in the derivation cohort ( n = 333) were assigned to hyperinflammatory or hypoinflammatory subphenotypes using biomarkers and latent class analysis. A machine learning model was trained on 165 EHR-derived variables to identify subphenotypes. The most important variables were selected for inclusion in a parsimonious model. The model was validated in a separate cohort ( n = 114). The EHR-based classifier achieved an area under the receiver operating characteristic curve (AUC) of 0.93 (95% CI, 0.87-0.98), with a sensitivity of 88% and specificity of 83% for determining hyperinflammatory PARDS. The parsimonious model, using only five laboratory values, achieved an AUC of 0.92 (95% CI, 0.86-0.98) with a sensitivity of 76% and specificity of 87% in the validation cohort.

Conclusions: This proof-of-concept study demonstrates that biomarker-based PARDS subphenotypes can be identified using EHR data at 24 hours of PARDS diagnosis. Further validation in larger, multicenter cohorts is needed to confirm the clinical utility of this approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pediatric Critical Care Medicine
Pediatric Critical Care Medicine 医学-危重病医学
CiteScore
7.40
自引率
14.60%
发文量
991
审稿时长
3-8 weeks
期刊介绍: Pediatric Critical Care Medicine is written for the entire critical care team: pediatricians, neonatologists, respiratory therapists, nurses, and others who deal with pediatric patients who are critically ill or injured. International in scope, with editorial board members and contributors from around the world, the Journal includes a full range of scientific content, including clinical articles, scientific investigations, solicited reviews, and abstracts from pediatric critical care meetings. Additionally, the Journal includes abstracts of selected articles published in Chinese, French, Italian, Japanese, Portuguese, and Spanish translations - making news of advances in the field available to pediatric and neonatal intensive care practitioners worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信