核MicroRNA-124-3p通过增强Cttn转录促进脊髓损伤后神经突生长。

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2025-07-01 Epub Date: 2025-03-05 DOI:10.1007/s12035-025-04813-9
Jin Yang, Junjie Dong, Haotian Li, Zhiqiang Gong, Bing Wang, Kaili Du, Chunqiang Zhang, Lingqiang Chen
{"title":"核MicroRNA-124-3p通过增强Cttn转录促进脊髓损伤后神经突生长。","authors":"Jin Yang, Junjie Dong, Haotian Li, Zhiqiang Gong, Bing Wang, Kaili Du, Chunqiang Zhang, Lingqiang Chen","doi":"10.1007/s12035-025-04813-9","DOIUrl":null,"url":null,"abstract":"<p><p>The outgrowth of motor neurons needs to be enhanced for the efficient recovery of sensory and movement abilities after nerve injury. The microRNA miR-124-3p can repair spinal cord injury (SCI) and promote neurite outgrowth. In this study, we aimed to investigate the effect of miR-124-3p on neurite outgrowth and the mechanism underlying its effect on SCI. Rats with SCI were intrathecally injected with agomiR-124 (miR-124-3p agomiR) for 14 days. The agomiR-124 improved locomotor functions were observed with open-field scoring systems. The levels of miR-124-3p and Cortactin across three weeks, and neuronal biomarkers NF200, Tuj1, Map2 and NeuN post 6 weeks were reduced in rats with SCI, which were reverted with agomiR-124 treatment. The wound scratch assay showed that agomiR-124 enhanced outgrowth of neurites in PC12 cell-derived neuronal like cells. Silencing of Cttn reduced the numbers of neurites and growth cones, while pcDNA-Cttn exerted an opposite effect. The enhanced outgrowth of neurites by agomiR-124 can be reverted by co-treated si-Cttn. Finally, the interactions among miR-124-3p, IPO8, Ago1/2, and the Cttn promoter were verified in PC12 cells through RNA immunoprecipitation, RNA pull-down, and chromatin immunoprecipitation assays. Our results showed that miR-124-3p enhanced the function of neurons and promoted neurite outgrowth following SCI, at least partly by targeting the promoter of Cttn and activating its transcription. These findings elucidated the mechanism underlying the neuroprotective effects of miR-124-3p and revealed the therapeutic ability of the two molecules as targets associated with SCI.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"8782-8795"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nuclear MicroRNA-124-3p Promotes Neurite Outgrowth After Spinal Cord Injury by Enhancing Cttn Transcription.\",\"authors\":\"Jin Yang, Junjie Dong, Haotian Li, Zhiqiang Gong, Bing Wang, Kaili Du, Chunqiang Zhang, Lingqiang Chen\",\"doi\":\"10.1007/s12035-025-04813-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The outgrowth of motor neurons needs to be enhanced for the efficient recovery of sensory and movement abilities after nerve injury. The microRNA miR-124-3p can repair spinal cord injury (SCI) and promote neurite outgrowth. In this study, we aimed to investigate the effect of miR-124-3p on neurite outgrowth and the mechanism underlying its effect on SCI. Rats with SCI were intrathecally injected with agomiR-124 (miR-124-3p agomiR) for 14 days. The agomiR-124 improved locomotor functions were observed with open-field scoring systems. The levels of miR-124-3p and Cortactin across three weeks, and neuronal biomarkers NF200, Tuj1, Map2 and NeuN post 6 weeks were reduced in rats with SCI, which were reverted with agomiR-124 treatment. The wound scratch assay showed that agomiR-124 enhanced outgrowth of neurites in PC12 cell-derived neuronal like cells. Silencing of Cttn reduced the numbers of neurites and growth cones, while pcDNA-Cttn exerted an opposite effect. The enhanced outgrowth of neurites by agomiR-124 can be reverted by co-treated si-Cttn. Finally, the interactions among miR-124-3p, IPO8, Ago1/2, and the Cttn promoter were verified in PC12 cells through RNA immunoprecipitation, RNA pull-down, and chromatin immunoprecipitation assays. Our results showed that miR-124-3p enhanced the function of neurons and promoted neurite outgrowth following SCI, at least partly by targeting the promoter of Cttn and activating its transcription. These findings elucidated the mechanism underlying the neuroprotective effects of miR-124-3p and revealed the therapeutic ability of the two molecules as targets associated with SCI.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"8782-8795\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04813-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04813-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

神经损伤后的感觉和运动能力的有效恢复需要加强运动神经元的生长。microRNA miR-124-3p能够修复脊髓损伤(SCI)并促进神经突生长。在这项研究中,我们旨在探讨miR-124-3p对神经突生长的影响及其对脊髓损伤的影响机制。脊髓损伤大鼠鞘内注射agomiR-124 (miR-124-3p agomiR) 14天。使用开放场地评分系统观察agomiR-124改善的运动功能。脊髓损伤大鼠在3周内miR-124-3p和cortatin的水平,以及6周后神经元生物标志物NF200、Tuj1、Map2和NeuN的水平降低,这些水平在agomiR-124治疗后得到恢复。伤口划伤实验显示,agomiR-124促进了PC12细胞源性神经元样细胞的神经突生长。Cttn的沉默减少了神经突和生长锥的数量,而pcDNA-Cttn则发挥相反的作用。通过共处理si-Cttn,可以逆转agomiR-124对神经突生长的增强作用。最后,通过RNA免疫沉淀、RNA下拉和染色质免疫沉淀实验,在PC12细胞中验证miR-124-3p、ip8、Ago1/2和Cttn启动子之间的相互作用。我们的研究结果表明,miR-124-3p至少部分通过靶向Cttn启动子并激活其转录,增强了脊髓损伤后神经元的功能并促进了神经突的生长。这些发现阐明了miR-124-3p神经保护作用的机制,并揭示了这两种分子作为脊髓损伤相关靶点的治疗能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nuclear MicroRNA-124-3p Promotes Neurite Outgrowth After Spinal Cord Injury by Enhancing Cttn Transcription.

The outgrowth of motor neurons needs to be enhanced for the efficient recovery of sensory and movement abilities after nerve injury. The microRNA miR-124-3p can repair spinal cord injury (SCI) and promote neurite outgrowth. In this study, we aimed to investigate the effect of miR-124-3p on neurite outgrowth and the mechanism underlying its effect on SCI. Rats with SCI were intrathecally injected with agomiR-124 (miR-124-3p agomiR) for 14 days. The agomiR-124 improved locomotor functions were observed with open-field scoring systems. The levels of miR-124-3p and Cortactin across three weeks, and neuronal biomarkers NF200, Tuj1, Map2 and NeuN post 6 weeks were reduced in rats with SCI, which were reverted with agomiR-124 treatment. The wound scratch assay showed that agomiR-124 enhanced outgrowth of neurites in PC12 cell-derived neuronal like cells. Silencing of Cttn reduced the numbers of neurites and growth cones, while pcDNA-Cttn exerted an opposite effect. The enhanced outgrowth of neurites by agomiR-124 can be reverted by co-treated si-Cttn. Finally, the interactions among miR-124-3p, IPO8, Ago1/2, and the Cttn promoter were verified in PC12 cells through RNA immunoprecipitation, RNA pull-down, and chromatin immunoprecipitation assays. Our results showed that miR-124-3p enhanced the function of neurons and promoted neurite outgrowth following SCI, at least partly by targeting the promoter of Cttn and activating its transcription. These findings elucidated the mechanism underlying the neuroprotective effects of miR-124-3p and revealed the therapeutic ability of the two molecules as targets associated with SCI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信