哺乳动物ALOX15B同源物的反应特异性不依赖于动物的进化等级。

IF 5 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Journal of Lipid Research Pub Date : 2025-04-01 Epub Date: 2025-03-03 DOI:10.1016/j.jlr.2025.100768
Eda Gündem, Sabine Stehling, Astrid Borchert, Hartmut Kuhn
{"title":"哺乳动物ALOX15B同源物的反应特异性不依赖于动物的进化等级。","authors":"Eda Gündem, Sabine Stehling, Astrid Borchert, Hartmut Kuhn","doi":"10.1016/j.jlr.2025.100768","DOIUrl":null,"url":null,"abstract":"<p><p>Arachidonic acid lipoxygenases (ALOXs) play important roles in cell differentiation and in the pathogenesis of cardiovascular, hyperproliferative, neurodegenerative, and metabolic diseases. The human genome involves six intact ALOX genes and knockout studies of the corresponding mouse orthologs indicated that the coding multiplicity of ALOX isoforms is not an indication for functional redundancy. Despite their evolutionary relatedness human and mouse ALOX15 and ALOX15B orthologs exhibit different catalytic properties. Human ALOX15 oxygenates arachidonic acid mainly to 15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid but 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid is the dominant oxygenation product of mouse Alox15. This functional difference is the results of a targeted enzyme evolution but the driving forces for this process have not been well defined. For human and mouse ALOX15B orthologs similar functional differences have been reported but for the time being it was unclear whether these differences might also be a consequence of targeted enzyme evolution. To address this question, we systematically searched the public databases for ALOX15B genes, expressed selected enzymes, and characterized their functional properties. We found that functional ALOX15B genes frequently occur in Prototheria and Eutheria but orthologous genes are rare in Metatheria. The vast majority of mammalian ALOX15B orthologs constitute arachidonic acid 15-lipoxygenating enzymes and this property did not depend on the evolutionary ranking of the animals. Only several Muridae species including M. musculus, M. pahari, M. caroli, M. coucha, and A. niloticus express arachidonic acid 8-lipoxygenating ALOX15B orthologs. Consequently, the difference in the reaction specificity of mouse and human ALOX15B orthologs may not be considered a functional consequence of targeted enzyme evolution.</p>","PeriodicalId":16209,"journal":{"name":"Journal of Lipid Research","volume":" ","pages":"100768"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11999201/pdf/","citationCount":"0","resultStr":"{\"title\":\"The reaction specificity of mammalian ALOX15B orthologs does not depend on the evolutionary ranking of the animals.\",\"authors\":\"Eda Gündem, Sabine Stehling, Astrid Borchert, Hartmut Kuhn\",\"doi\":\"10.1016/j.jlr.2025.100768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Arachidonic acid lipoxygenases (ALOXs) play important roles in cell differentiation and in the pathogenesis of cardiovascular, hyperproliferative, neurodegenerative, and metabolic diseases. The human genome involves six intact ALOX genes and knockout studies of the corresponding mouse orthologs indicated that the coding multiplicity of ALOX isoforms is not an indication for functional redundancy. Despite their evolutionary relatedness human and mouse ALOX15 and ALOX15B orthologs exhibit different catalytic properties. Human ALOX15 oxygenates arachidonic acid mainly to 15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid but 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid is the dominant oxygenation product of mouse Alox15. This functional difference is the results of a targeted enzyme evolution but the driving forces for this process have not been well defined. For human and mouse ALOX15B orthologs similar functional differences have been reported but for the time being it was unclear whether these differences might also be a consequence of targeted enzyme evolution. To address this question, we systematically searched the public databases for ALOX15B genes, expressed selected enzymes, and characterized their functional properties. We found that functional ALOX15B genes frequently occur in Prototheria and Eutheria but orthologous genes are rare in Metatheria. The vast majority of mammalian ALOX15B orthologs constitute arachidonic acid 15-lipoxygenating enzymes and this property did not depend on the evolutionary ranking of the animals. Only several Muridae species including M. musculus, M. pahari, M. caroli, M. coucha, and A. niloticus express arachidonic acid 8-lipoxygenating ALOX15B orthologs. Consequently, the difference in the reaction specificity of mouse and human ALOX15B orthologs may not be considered a functional consequence of targeted enzyme evolution.</p>\",\"PeriodicalId\":16209,\"journal\":{\"name\":\"Journal of Lipid Research\",\"volume\":\" \",\"pages\":\"100768\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11999201/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Lipid Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jlr.2025.100768\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lipid Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jlr.2025.100768","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

脂氧合酶(ALOX)在细胞分化和心血管、增生性疾病、神经退行性疾病和代谢性疾病的发病机制中发挥重要作用。人类基因组包含6个完整的ALOX基因,对相应小鼠同源基因的敲除研究表明,ALOX-同种异构体的编码多样性并不是功能冗余的指示。尽管ALOX15和ALOX15B同源物与人类和小鼠的进化关系密切,但它们表现出不同的催化特性。人ALOX15主要将花生四烯酸氧合为15-HpETE,而小鼠ALOX15的主要氧合产物是12-HpETE。这种功能差异是一种靶向酶进化的结果,但这一过程的驱动力尚未得到很好的定义。对于人类和小鼠ALOX15B同源物,已经报道了类似的功能差异,但目前尚不清楚这些差异是否也可能是靶向酶进化的结果。为了解决这个问题,我们系统地检索了ALOX15B基因的公共数据库,表达了选定的酶并表征了它们的功能特性。我们发现功能性ALOX15B基因在原theria和真theria中经常出现,而在后theria中很少有同源基因。绝大多数哺乳动物的ALOX15B同源基因都含有花生四烯酸15-脂氧合酶,这种性质与动物的进化等级无关。只有M. musidus、M. pahari、M. caroli、M. coucha和A. niloticus等Muridae种表达花生四烯酸8-脂氧合ALOX15B同源物。因此,小鼠和人类ALOX15B同源物的反应特异性差异可能不被认为是靶向酶进化的功能后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The reaction specificity of mammalian ALOX15B orthologs does not depend on the evolutionary ranking of the animals.

Arachidonic acid lipoxygenases (ALOXs) play important roles in cell differentiation and in the pathogenesis of cardiovascular, hyperproliferative, neurodegenerative, and metabolic diseases. The human genome involves six intact ALOX genes and knockout studies of the corresponding mouse orthologs indicated that the coding multiplicity of ALOX isoforms is not an indication for functional redundancy. Despite their evolutionary relatedness human and mouse ALOX15 and ALOX15B orthologs exhibit different catalytic properties. Human ALOX15 oxygenates arachidonic acid mainly to 15S-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid but 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid is the dominant oxygenation product of mouse Alox15. This functional difference is the results of a targeted enzyme evolution but the driving forces for this process have not been well defined. For human and mouse ALOX15B orthologs similar functional differences have been reported but for the time being it was unclear whether these differences might also be a consequence of targeted enzyme evolution. To address this question, we systematically searched the public databases for ALOX15B genes, expressed selected enzymes, and characterized their functional properties. We found that functional ALOX15B genes frequently occur in Prototheria and Eutheria but orthologous genes are rare in Metatheria. The vast majority of mammalian ALOX15B orthologs constitute arachidonic acid 15-lipoxygenating enzymes and this property did not depend on the evolutionary ranking of the animals. Only several Muridae species including M. musculus, M. pahari, M. caroli, M. coucha, and A. niloticus express arachidonic acid 8-lipoxygenating ALOX15B orthologs. Consequently, the difference in the reaction specificity of mouse and human ALOX15B orthologs may not be considered a functional consequence of targeted enzyme evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Lipid Research
Journal of Lipid Research 生物-生化与分子生物学
CiteScore
11.10
自引率
4.60%
发文量
146
审稿时长
41 days
期刊介绍: The Journal of Lipid Research (JLR) publishes original articles and reviews in the broadly defined area of biological lipids. We encourage the submission of manuscripts relating to lipids, including those addressing problems in biochemistry, molecular biology, structural biology, cell biology, genetics, molecular medicine, clinical medicine and metabolism. Major criteria for acceptance of articles are new insights into mechanisms of lipid function and metabolism and/or genes regulating lipid metabolism along with sound primary experimental data. Interpretation of the data is the authors’ responsibility, and speculation should be labeled as such. Manuscripts that provide new ways of purifying, identifying and quantifying lipids are invited for the Methods section of the Journal. JLR encourages contributions from investigators in all countries, but articles must be submitted in clear and concise English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信