{"title":"一种分布导向的Mapper算法。","authors":"Yuyang Tao, Shufei Ge","doi":"10.1186/s12859-025-06085-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Mapper algorithm is an essential tool for exploring the data shape in topological data analysis. With a dataset as an input, the Mapper algorithm outputs a graph representing the topological features of the whole dataset. This graph is often regarded as an approximation of a Reeb graph of a dataset. The classic Mapper algorithm uses fixed interval lengths and overlapping ratios, which might fail to reveal subtle features of a dataset, especially when the underlying structure is complex.</p><p><strong>Results: </strong>In this work, we introduce a distribution-guided Mapper algorithm named D-Mapper, which utilizes the property of the probability model and data intrinsic characteristics to generate density-guided covers and provide enhanced topological features. Moreover, we introduce a metric accounting for both the quality of overlap clustering and extended persistent homology to measure the performance of Mapper-type algorithms. Our numerical experiments indicate that the D-Mapper outperforms the classic Mapper algorithm in various scenarios. We also apply the D-Mapper to a SARS-COV-2 coronavirus RNA sequence dataset to explore the topological structure of different virus variants. The results indicate that the D-Mapper algorithm can reveal both the vertical and horizontal evolutionary processes of the viruses. Our code is available at https://github.com/ShufeiGe/D-Mapper .</p><p><strong>Conclusion: </strong>The D-Mapper algorithm can generate covers from data based on a probability model. This work demonstrates the power of fusing probabilistic models with Mapper algorithms.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"73"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881416/pdf/","citationCount":"0","resultStr":"{\"title\":\"A distribution-guided Mapper algorithm.\",\"authors\":\"Yuyang Tao, Shufei Ge\",\"doi\":\"10.1186/s12859-025-06085-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The Mapper algorithm is an essential tool for exploring the data shape in topological data analysis. With a dataset as an input, the Mapper algorithm outputs a graph representing the topological features of the whole dataset. This graph is often regarded as an approximation of a Reeb graph of a dataset. The classic Mapper algorithm uses fixed interval lengths and overlapping ratios, which might fail to reveal subtle features of a dataset, especially when the underlying structure is complex.</p><p><strong>Results: </strong>In this work, we introduce a distribution-guided Mapper algorithm named D-Mapper, which utilizes the property of the probability model and data intrinsic characteristics to generate density-guided covers and provide enhanced topological features. Moreover, we introduce a metric accounting for both the quality of overlap clustering and extended persistent homology to measure the performance of Mapper-type algorithms. Our numerical experiments indicate that the D-Mapper outperforms the classic Mapper algorithm in various scenarios. We also apply the D-Mapper to a SARS-COV-2 coronavirus RNA sequence dataset to explore the topological structure of different virus variants. The results indicate that the D-Mapper algorithm can reveal both the vertical and horizontal evolutionary processes of the viruses. Our code is available at https://github.com/ShufeiGe/D-Mapper .</p><p><strong>Conclusion: </strong>The D-Mapper algorithm can generate covers from data based on a probability model. This work demonstrates the power of fusing probabilistic models with Mapper algorithms.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"73\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881416/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-025-06085-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06085-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Background: The Mapper algorithm is an essential tool for exploring the data shape in topological data analysis. With a dataset as an input, the Mapper algorithm outputs a graph representing the topological features of the whole dataset. This graph is often regarded as an approximation of a Reeb graph of a dataset. The classic Mapper algorithm uses fixed interval lengths and overlapping ratios, which might fail to reveal subtle features of a dataset, especially when the underlying structure is complex.
Results: In this work, we introduce a distribution-guided Mapper algorithm named D-Mapper, which utilizes the property of the probability model and data intrinsic characteristics to generate density-guided covers and provide enhanced topological features. Moreover, we introduce a metric accounting for both the quality of overlap clustering and extended persistent homology to measure the performance of Mapper-type algorithms. Our numerical experiments indicate that the D-Mapper outperforms the classic Mapper algorithm in various scenarios. We also apply the D-Mapper to a SARS-COV-2 coronavirus RNA sequence dataset to explore the topological structure of different virus variants. The results indicate that the D-Mapper algorithm can reveal both the vertical and horizontal evolutionary processes of the viruses. Our code is available at https://github.com/ShufeiGe/D-Mapper .
Conclusion: The D-Mapper algorithm can generate covers from data based on a probability model. This work demonstrates the power of fusing probabilistic models with Mapper algorithms.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.