下丘脑和脑干回路在葡萄糖稳态调节中的作用。

IF 4.2 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Zitian Lin, Yunxin Xuan, Yingshi Zhang, Qirui Zhou, Weiwei Qiu
{"title":"下丘脑和脑干回路在葡萄糖稳态调节中的作用。","authors":"Zitian Lin, Yunxin Xuan, Yingshi Zhang, Qirui Zhou, Weiwei Qiu","doi":"10.1152/ajpendo.00474.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The central nervous system (CNS) senses and integrates blood glucose status, regulating its levels through communication with peripheral organs. Since traditional wisdom holds that the hypothalamus primarily controls glucose homeostasis, the brainstem, although less studied, has been emerging as a key player in blood glucose metabolism. Although the brainstem is reciprocally wired with the hypothalamus, their interactions are crucial for glucose control. Here, we focus on classic discoveries and recent advancements of hypothalamic and brainstem nodes that regulate glucose homeostasis. Based on the current progress and development for central regulation of blood sugar, we propose that the circuitry and cellular mechanisms for how hypothalamus and brainstem coordinate in blood sugar regulation are crucial; hence, a deeper understanding of both nuclei could shed light on a future cure for diabetes.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E588-E598"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypothalamus and brainstem circuits in the regulation of glucose homeostasis.\",\"authors\":\"Zitian Lin, Yunxin Xuan, Yingshi Zhang, Qirui Zhou, Weiwei Qiu\",\"doi\":\"10.1152/ajpendo.00474.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The central nervous system (CNS) senses and integrates blood glucose status, regulating its levels through communication with peripheral organs. Since traditional wisdom holds that the hypothalamus primarily controls glucose homeostasis, the brainstem, although less studied, has been emerging as a key player in blood glucose metabolism. Although the brainstem is reciprocally wired with the hypothalamus, their interactions are crucial for glucose control. Here, we focus on classic discoveries and recent advancements of hypothalamic and brainstem nodes that regulate glucose homeostasis. Based on the current progress and development for central regulation of blood sugar, we propose that the circuitry and cellular mechanisms for how hypothalamus and brainstem coordinate in blood sugar regulation are crucial; hence, a deeper understanding of both nuclei could shed light on a future cure for diabetes.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"E588-E598\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00474.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00474.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

中枢神经系统(CNS)感知并整合血糖状态,通过与外周器官的通信调节血糖水平。传统观点认为,下丘脑主要控制血糖平衡,而脑干虽然研究较少,但已逐渐成为血糖代谢的关键角色。脑干与下丘脑之间存在相互联系,它们之间的相互作用对葡萄糖控制至关重要。在此,我们将重点介绍调节葡萄糖稳态的下丘脑和脑干节点的经典发现和最新进展。基于当前血糖中枢调控的进展和发展,我们提出下丘脑和脑干在血糖调控中如何协调的电路和细胞机制至关重要,因此,深入了解这两个神经核可为未来治疗糖尿病提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hypothalamus and brainstem circuits in the regulation of glucose homeostasis.

The central nervous system (CNS) senses and integrates blood glucose status, regulating its levels through communication with peripheral organs. Since traditional wisdom holds that the hypothalamus primarily controls glucose homeostasis, the brainstem, although less studied, has been emerging as a key player in blood glucose metabolism. Although the brainstem is reciprocally wired with the hypothalamus, their interactions are crucial for glucose control. Here, we focus on classic discoveries and recent advancements of hypothalamic and brainstem nodes that regulate glucose homeostasis. Based on the current progress and development for central regulation of blood sugar, we propose that the circuitry and cellular mechanisms for how hypothalamus and brainstem coordinate in blood sugar regulation are crucial; hence, a deeper understanding of both nuclei could shed light on a future cure for diabetes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
0.00%
发文量
98
审稿时长
1 months
期刊介绍: The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信