{"title":"下丘脑和脑干回路在葡萄糖稳态调节中的作用。","authors":"Zitian Lin, Yunxin Xuan, Yingshi Zhang, Qirui Zhou, Weiwei Qiu","doi":"10.1152/ajpendo.00474.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The central nervous system (CNS) senses and integrates blood glucose status, regulating its levels through communication with peripheral organs. Since traditional wisdom holds that the hypothalamus primarily controls glucose homeostasis, the brainstem, although less studied, has been emerging as a key player in blood glucose metabolism. Although the brainstem is reciprocally wired with the hypothalamus, their interactions are crucial for glucose control. Here, we focus on classic discoveries and recent advancements of hypothalamic and brainstem nodes that regulate glucose homeostasis. Based on the current progress and development for central regulation of blood sugar, we propose that the circuitry and cellular mechanisms for how hypothalamus and brainstem coordinate in blood sugar regulation are crucial; hence, a deeper understanding of both nuclei could shed light on a future cure for diabetes.</p>","PeriodicalId":7594,"journal":{"name":"American journal of physiology. Endocrinology and metabolism","volume":" ","pages":"E588-E598"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypothalamus and brainstem circuits in the regulation of glucose homeostasis.\",\"authors\":\"Zitian Lin, Yunxin Xuan, Yingshi Zhang, Qirui Zhou, Weiwei Qiu\",\"doi\":\"10.1152/ajpendo.00474.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The central nervous system (CNS) senses and integrates blood glucose status, regulating its levels through communication with peripheral organs. Since traditional wisdom holds that the hypothalamus primarily controls glucose homeostasis, the brainstem, although less studied, has been emerging as a key player in blood glucose metabolism. Although the brainstem is reciprocally wired with the hypothalamus, their interactions are crucial for glucose control. Here, we focus on classic discoveries and recent advancements of hypothalamic and brainstem nodes that regulate glucose homeostasis. Based on the current progress and development for central regulation of blood sugar, we propose that the circuitry and cellular mechanisms for how hypothalamus and brainstem coordinate in blood sugar regulation are crucial; hence, a deeper understanding of both nuclei could shed light on a future cure for diabetes.</p>\",\"PeriodicalId\":7594,\"journal\":{\"name\":\"American journal of physiology. Endocrinology and metabolism\",\"volume\":\" \",\"pages\":\"E588-E598\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Endocrinology and metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpendo.00474.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Endocrinology and metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpendo.00474.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Hypothalamus and brainstem circuits in the regulation of glucose homeostasis.
The central nervous system (CNS) senses and integrates blood glucose status, regulating its levels through communication with peripheral organs. Since traditional wisdom holds that the hypothalamus primarily controls glucose homeostasis, the brainstem, although less studied, has been emerging as a key player in blood glucose metabolism. Although the brainstem is reciprocally wired with the hypothalamus, their interactions are crucial for glucose control. Here, we focus on classic discoveries and recent advancements of hypothalamic and brainstem nodes that regulate glucose homeostasis. Based on the current progress and development for central regulation of blood sugar, we propose that the circuitry and cellular mechanisms for how hypothalamus and brainstem coordinate in blood sugar regulation are crucial; hence, a deeper understanding of both nuclei could shed light on a future cure for diabetes.
期刊介绍:
The American Journal of Physiology-Endocrinology and Metabolism publishes original, mechanistic studies on the physiology of endocrine and metabolic systems. Physiological, cellular, and molecular studies in whole animals or humans will be considered. Specific themes include, but are not limited to, mechanisms of hormone and growth factor action; hormonal and nutritional regulation of metabolism, inflammation, microbiome and energy balance; integrative organ cross talk; paracrine and autocrine control of endocrine cells; function and activation of hormone receptors; endocrine or metabolic control of channels, transporters, and membrane function; temporal analysis of hormone secretion and metabolism; and mathematical/kinetic modeling of metabolism. Novel molecular, immunological, or biophysical studies of hormone action are also welcome.