全基因组转录组学揭示了新生儿高氧时心房和心室的不同反应。

IF 4.1 2区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
E David Cohen, Min Yee, Kyle Roethlin, Irina Prelipcean, Eric M Small, George A Porter, Michael A O'Reilly
{"title":"全基因组转录组学揭示了新生儿高氧时心房和心室的不同反应。","authors":"E David Cohen, Min Yee, Kyle Roethlin, Irina Prelipcean, Eric M Small, George A Porter, Michael A O'Reilly","doi":"10.1152/ajpheart.00039.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Preterm infants exposed to supplemental oxygen (hyperoxia) are at risk for developing heart failure later in life. Exposing rodents in early postnatal life to hyperoxia causes heart failure that resembles cardiac disease seen in adult humans who were born preterm. Neonatal hyperoxia exposure affects the left atrium and left ventricle differently, inhibiting the proliferation and survival of atrial cardiomyocytes while enhancing cardiomyocyte differentiation in the ventricle. In this study, whole genome transcriptomics revealed the left atria of neonatal mice are more responsive to hyperoxia than the left ventricle, with the expression of 4,285 genes affected in the atrium and 1,743 in the ventricle. Although hyperoxia activated p53 target genes in both chambers, it caused greater DNA damage, phosphorylation of the DNA damage responsive ataxia-telangiectasia mutated (ATM) kinase, mitochondrial stress, and apoptosis in the atrium. In contrast, hyperoxia induced the expression of genes involved in DNA repair and stress granules in the ventricle. Atrial cells also showed a greater loss of extracellular matrix and superoxide dismutase 3 (SOD3) expression, possibly contributing to the enlargement of the left atrium and reduced velocity of blood flow across the mitral valve seen in mice exposed to hyperoxia. Diastolic dysfunction and heart failure in hyperoxia-exposed mice may thus stem from its effects on the left atrium, suggesting chamber-specific therapies may be needed to address diastolic dysfunction and heart failure in people who were born preterm.<b>NEW & NOTEWORTHY</b> Preterm infants often require oxygen (hyperoxia) at birth, but early exposure increases the risk of heart failure later in life. Previously, we showed neonatal mice exposed to hyperoxia develop adult diastolic dysfunction and heart failure like preterm-born humans. In this study, RNA-sequencing reveals hyperoxia induces broader transcriptional changes in the atrium than ventricle, including upregulation of stress pathways and loss of superoxide dismutase 3 and extracellular matrix genes, highlighting the atrium's heightened vulnerability to hyperoxia.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":"H832-H845"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Whole genome transcriptomics reveal distinct atrial versus ventricular responses to neonatal hyperoxia.\",\"authors\":\"E David Cohen, Min Yee, Kyle Roethlin, Irina Prelipcean, Eric M Small, George A Porter, Michael A O'Reilly\",\"doi\":\"10.1152/ajpheart.00039.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preterm infants exposed to supplemental oxygen (hyperoxia) are at risk for developing heart failure later in life. Exposing rodents in early postnatal life to hyperoxia causes heart failure that resembles cardiac disease seen in adult humans who were born preterm. Neonatal hyperoxia exposure affects the left atrium and left ventricle differently, inhibiting the proliferation and survival of atrial cardiomyocytes while enhancing cardiomyocyte differentiation in the ventricle. In this study, whole genome transcriptomics revealed the left atria of neonatal mice are more responsive to hyperoxia than the left ventricle, with the expression of 4,285 genes affected in the atrium and 1,743 in the ventricle. Although hyperoxia activated p53 target genes in both chambers, it caused greater DNA damage, phosphorylation of the DNA damage responsive ataxia-telangiectasia mutated (ATM) kinase, mitochondrial stress, and apoptosis in the atrium. In contrast, hyperoxia induced the expression of genes involved in DNA repair and stress granules in the ventricle. Atrial cells also showed a greater loss of extracellular matrix and superoxide dismutase 3 (SOD3) expression, possibly contributing to the enlargement of the left atrium and reduced velocity of blood flow across the mitral valve seen in mice exposed to hyperoxia. Diastolic dysfunction and heart failure in hyperoxia-exposed mice may thus stem from its effects on the left atrium, suggesting chamber-specific therapies may be needed to address diastolic dysfunction and heart failure in people who were born preterm.<b>NEW & NOTEWORTHY</b> Preterm infants often require oxygen (hyperoxia) at birth, but early exposure increases the risk of heart failure later in life. Previously, we showed neonatal mice exposed to hyperoxia develop adult diastolic dysfunction and heart failure like preterm-born humans. In this study, RNA-sequencing reveals hyperoxia induces broader transcriptional changes in the atrium than ventricle, including upregulation of stress pathways and loss of superoxide dismutase 3 and extracellular matrix genes, highlighting the atrium's heightened vulnerability to hyperoxia.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":\" \",\"pages\":\"H832-H845\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00039.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00039.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

暴露于补充氧气(高氧)的早产儿在以后的生活中有发生心力衰竭的风险。在出生后早期将啮齿动物暴露在高氧环境中会导致心力衰竭,类似于早产成人的心脏病。新生儿高氧暴露对左心房和左心室的影响不同,抑制心房心肌细胞的增殖和存活,同时增强心室心肌细胞的分化。在本研究中,全基因组转录组学显示,新生小鼠左心房比左心室对高氧反应更敏感,其中心房和心室分别有4285个和1743个基因的表达受到影响。当高氧激活了两个心室的p53靶基因时,它引起了更大的DNA损伤,DNA损伤反应性共济失调毛细血管扩张突变(ATM)激酶磷酸化,线粒体应激和心房凋亡。相反,高氧诱导脑室DNA修复和应激颗粒相关基因的表达。心房细胞也表现出细胞外基质和超氧化物歧化酶3 (SOD3)表达的更大损失,这可能导致暴露于高氧环境的小鼠左心房增大和二尖瓣血流速度降低。因此,暴露在高氧环境下的小鼠的舒张功能障碍和心力衰竭可能源于其对左心房的影响,这表明可能需要针对早产儿的心室特异性治疗来解决舒张功能障碍和心力衰竭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Whole genome transcriptomics reveal distinct atrial versus ventricular responses to neonatal hyperoxia.

Preterm infants exposed to supplemental oxygen (hyperoxia) are at risk for developing heart failure later in life. Exposing rodents in early postnatal life to hyperoxia causes heart failure that resembles cardiac disease seen in adult humans who were born preterm. Neonatal hyperoxia exposure affects the left atrium and left ventricle differently, inhibiting the proliferation and survival of atrial cardiomyocytes while enhancing cardiomyocyte differentiation in the ventricle. In this study, whole genome transcriptomics revealed the left atria of neonatal mice are more responsive to hyperoxia than the left ventricle, with the expression of 4,285 genes affected in the atrium and 1,743 in the ventricle. Although hyperoxia activated p53 target genes in both chambers, it caused greater DNA damage, phosphorylation of the DNA damage responsive ataxia-telangiectasia mutated (ATM) kinase, mitochondrial stress, and apoptosis in the atrium. In contrast, hyperoxia induced the expression of genes involved in DNA repair and stress granules in the ventricle. Atrial cells also showed a greater loss of extracellular matrix and superoxide dismutase 3 (SOD3) expression, possibly contributing to the enlargement of the left atrium and reduced velocity of blood flow across the mitral valve seen in mice exposed to hyperoxia. Diastolic dysfunction and heart failure in hyperoxia-exposed mice may thus stem from its effects on the left atrium, suggesting chamber-specific therapies may be needed to address diastolic dysfunction and heart failure in people who were born preterm.NEW & NOTEWORTHY Preterm infants often require oxygen (hyperoxia) at birth, but early exposure increases the risk of heart failure later in life. Previously, we showed neonatal mice exposed to hyperoxia develop adult diastolic dysfunction and heart failure like preterm-born humans. In this study, RNA-sequencing reveals hyperoxia induces broader transcriptional changes in the atrium than ventricle, including upregulation of stress pathways and loss of superoxide dismutase 3 and extracellular matrix genes, highlighting the atrium's heightened vulnerability to hyperoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
202
审稿时长
2-4 weeks
期刊介绍: The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信