从朱诺等离子体波观测推断出的木星上层电离层的电子密度

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
W. S. Kurth, J. B. Faden, J. H. Waite, A. H. Sulaiman, S. S. Elliott, G. B. Hospodarsky, J. E. P. Connerney, J. A. Kammer, T. Greathouse, P. Valek, F. Allegrini, F. Bagenal, T. Stallard, L. Moore, D. A. Coffin, O. Agiwal, P. Withers, S. J. Bolton
{"title":"从朱诺等离子体波观测推断出的木星上层电离层的电子密度","authors":"W. S. Kurth,&nbsp;J. B. Faden,&nbsp;J. H. Waite,&nbsp;A. H. Sulaiman,&nbsp;S. S. Elliott,&nbsp;G. B. Hospodarsky,&nbsp;J. E. P. Connerney,&nbsp;J. A. Kammer,&nbsp;T. Greathouse,&nbsp;P. Valek,&nbsp;F. Allegrini,&nbsp;F. Bagenal,&nbsp;T. Stallard,&nbsp;L. Moore,&nbsp;D. A. Coffin,&nbsp;O. Agiwal,&nbsp;P. Withers,&nbsp;S. J. Bolton","doi":"10.1029/2024JE008845","DOIUrl":null,"url":null,"abstract":"<p>Juno's highly eccentric polar orbit takes it to perijove distances of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>1.06 <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>R</mi>\n <mi>J</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{R}}_{J}$</annotation>\n </semantics></math> on each orbit. For the first perijove, this occurred just north of the jovigraphic equator, but has precessed north by about a degree per orbit over the mission. Minimum altitudes vary from <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>3,200–8,000 km through the mission. The Waves instrument observes a number of plasma wave modes in and near the non-auroral ionosphere that provide information on the local electron number density, including electron plasma oscillations that occur at the electron plasma frequency <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>p</mi>\n <mi>e</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${f}_{pe}$</annotation>\n </semantics></math> and whistler-mode hiss which has an upper frequency limit of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>f</mi>\n <mrow>\n <mi>p</mi>\n <mi>e</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${f}_{pe}$</annotation>\n </semantics></math> in Jupiter's strongly magnetized inner magnetosphere. The electron plasma frequency provides the electron number density. We present electron densities in the topside ionosphere, similar to Earth's F2 layer, from the <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>59 perijoves analyzed to date. Peak densities range from <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>100 to 80,000 <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>cm</mtext>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{cm}}^{-3}$</annotation>\n </semantics></math> at latitudes up to <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>40</mn>\n <mo>°</mo>\n </mrow>\n <annotation> ${\\sim} 40{}^{\\circ}$</annotation>\n </semantics></math>. The density profiles can be highly variable from one perijove to the next. And, there can be deviations from simple smooth variations with altitude within individual ionospheric passes. Spatial variations may be responsible for some of the variability, perhaps related to Jupiter's complex magnetic field. We show the variation in ionospheric density profiles and the distribution of peak densities as a function of latitude and longitude as well as other geometric parameters. In addition to the complex magnetic field, possible factors affecting ionospheric density variations investigated here are ionospheric dynamos analogous to those at Earth and precipitation of energetic particles.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008845","citationCount":"0","resultStr":"{\"title\":\"Electron Densities in Jupiter's Upper Ionosphere Inferred From Juno Plasma Wave Observations\",\"authors\":\"W. S. Kurth,&nbsp;J. B. Faden,&nbsp;J. H. Waite,&nbsp;A. H. Sulaiman,&nbsp;S. S. Elliott,&nbsp;G. B. Hospodarsky,&nbsp;J. E. P. Connerney,&nbsp;J. A. Kammer,&nbsp;T. Greathouse,&nbsp;P. Valek,&nbsp;F. Allegrini,&nbsp;F. Bagenal,&nbsp;T. Stallard,&nbsp;L. Moore,&nbsp;D. A. Coffin,&nbsp;O. Agiwal,&nbsp;P. Withers,&nbsp;S. J. Bolton\",\"doi\":\"10.1029/2024JE008845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Juno's highly eccentric polar orbit takes it to perijove distances of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>1.06 <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>R</mi>\\n <mi>J</mi>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{R}}_{J}$</annotation>\\n </semantics></math> on each orbit. For the first perijove, this occurred just north of the jovigraphic equator, but has precessed north by about a degree per orbit over the mission. Minimum altitudes vary from <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>3,200–8,000 km through the mission. The Waves instrument observes a number of plasma wave modes in and near the non-auroral ionosphere that provide information on the local electron number density, including electron plasma oscillations that occur at the electron plasma frequency <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>p</mi>\\n <mi>e</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${f}_{pe}$</annotation>\\n </semantics></math> and whistler-mode hiss which has an upper frequency limit of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mrow>\\n <mi>p</mi>\\n <mi>e</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${f}_{pe}$</annotation>\\n </semantics></math> in Jupiter's strongly magnetized inner magnetosphere. The electron plasma frequency provides the electron number density. We present electron densities in the topside ionosphere, similar to Earth's F2 layer, from the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>59 perijoves analyzed to date. Peak densities range from <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>100 to 80,000 <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>cm</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\text{cm}}^{-3}$</annotation>\\n </semantics></math> at latitudes up to <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n <mn>40</mn>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${\\\\sim} 40{}^{\\\\circ}$</annotation>\\n </semantics></math>. The density profiles can be highly variable from one perijove to the next. And, there can be deviations from simple smooth variations with altitude within individual ionospheric passes. Spatial variations may be responsible for some of the variability, perhaps related to Jupiter's complex magnetic field. We show the variation in ionospheric density profiles and the distribution of peak densities as a function of latitude and longitude as well as other geometric parameters. In addition to the complex magnetic field, possible factors affecting ionospheric density variations investigated here are ionospheric dynamos analogous to those at Earth and precipitation of energetic particles.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 3\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008845\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008845\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008845","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

朱诺号高度偏心的极轨道使它在每个轨道上的距离为~ ${\sim} $ 1.06 R J ${\ maththrm {R}}_{J}$。对于第一个近日点来说,这发生在赤道以北,但在任务的每个轨道上都向北推进了大约一度。在整个任务过程中,最小高度从3200 - 8000公里不等。波仪器观察非极光电离层内和附近的许多等离子体波模式,这些模式提供了当地电子数密度的信息,包括发生在电子等离子体频率f pe ${f}_{pe}$的电子等离子体振荡和频率上限为f的哨子模式嘶嘶声pe ${f}_{pe}$在木星强磁化的内磁层。电子等离子体频率提供了电子数密度。我们从迄今为止分析的59颗近星中获得了类似于地球F2层的上层电离层的电子密度。峰值密度范围从~ ${\sim} $ 100到80,000 cm−3 ${\text{cm}}^{-3}$,纬度高达~ 40°${\sim} 40{}^{\circ}$。从一个近日点到下一个近日点的密度分布变化很大。而且,在个别电离层通道内,随高度的简单平滑变化可能会有偏差。空间的变化可能会导致一些变化,可能与木星复杂的磁场有关。我们展示了电离层密度剖面的变化和峰值密度的分布作为纬度和经度以及其他几何参数的函数。除了复杂的磁场外,这里研究的影响电离层密度变化的可能因素是类似于地球上的电离层发电机和高能粒子的沉淀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electron Densities in Jupiter's Upper Ionosphere Inferred From Juno Plasma Wave Observations

Electron Densities in Jupiter's Upper Ionosphere Inferred From Juno Plasma Wave Observations

Juno's highly eccentric polar orbit takes it to perijove distances of ${\sim} $ 1.06 R J ${\mathrm{R}}_{J}$ on each orbit. For the first perijove, this occurred just north of the jovigraphic equator, but has precessed north by about a degree per orbit over the mission. Minimum altitudes vary from ${\sim} $ 3,200–8,000 km through the mission. The Waves instrument observes a number of plasma wave modes in and near the non-auroral ionosphere that provide information on the local electron number density, including electron plasma oscillations that occur at the electron plasma frequency f p e ${f}_{pe}$ and whistler-mode hiss which has an upper frequency limit of f p e ${f}_{pe}$ in Jupiter's strongly magnetized inner magnetosphere. The electron plasma frequency provides the electron number density. We present electron densities in the topside ionosphere, similar to Earth's F2 layer, from the ${\sim} $ 59 perijoves analyzed to date. Peak densities range from ${\sim} $ 100 to 80,000 cm 3 ${\text{cm}}^{-3}$ at latitudes up to 40 ° ${\sim} 40{}^{\circ}$ . The density profiles can be highly variable from one perijove to the next. And, there can be deviations from simple smooth variations with altitude within individual ionospheric passes. Spatial variations may be responsible for some of the variability, perhaps related to Jupiter's complex magnetic field. We show the variation in ionospheric density profiles and the distribution of peak densities as a function of latitude and longitude as well as other geometric parameters. In addition to the complex magnetic field, possible factors affecting ionospheric density variations investigated here are ionospheric dynamos analogous to those at Earth and precipitation of energetic particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信