有规则的利玛窦曲面和恒定扭力曲线

IF 0.6 3区 数学 Q3 MATHEMATICS
Alcides de Carvalho, Iury Domingos, Roney Santos
{"title":"有规则的利玛窦曲面和恒定扭力曲线","authors":"Alcides de Carvalho,&nbsp;Iury Domingos,&nbsp;Roney Santos","doi":"10.1007/s10455-025-09991-2","DOIUrl":null,"url":null,"abstract":"<div><p>We show that all non-developable ruled surfaces endowed with Ricci metrics in the three-dimensional Euclidean space may be constructed using curves of constant torsion and its binormal. This allows us to give characterizations of the helicoid as the only surface of this kind that admits a parametrization with plane line of striction, and as the only with constant mean curvature.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"67 2","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ruled Ricci surfaces and curves of constant torsion\",\"authors\":\"Alcides de Carvalho,&nbsp;Iury Domingos,&nbsp;Roney Santos\",\"doi\":\"10.1007/s10455-025-09991-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that all non-developable ruled surfaces endowed with Ricci metrics in the three-dimensional Euclidean space may be constructed using curves of constant torsion and its binormal. This allows us to give characterizations of the helicoid as the only surface of this kind that admits a parametrization with plane line of striction, and as the only with constant mean curvature.</p></div>\",\"PeriodicalId\":8268,\"journal\":{\"name\":\"Annals of Global Analysis and Geometry\",\"volume\":\"67 2\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Global Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-025-09991-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-09991-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了三维欧几里德空间中所有具有Ricci度量的不可展开直纹曲面都可以用常扭曲线及其二法线来构造。这使我们可以把螺旋面描述为这类曲面中唯一允许用平面约束线进行参数化的曲面,以及唯一具有恒定平均曲率的曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ruled Ricci surfaces and curves of constant torsion

We show that all non-developable ruled surfaces endowed with Ricci metrics in the three-dimensional Euclidean space may be constructed using curves of constant torsion and its binormal. This allows us to give characterizations of the helicoid as the only surface of this kind that admits a parametrization with plane line of striction, and as the only with constant mean curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信