ChatGPT用于深度学习程序修复的提示设计、优势与局限性研究

IF 3.1 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jialun Cao, Meiziniu Li, Ming Wen, Shing-Chi Cheung
{"title":"ChatGPT用于深度学习程序修复的提示设计、优势与局限性研究","authors":"Jialun Cao,&nbsp;Meiziniu Li,&nbsp;Ming Wen,&nbsp;Shing-Chi Cheung","doi":"10.1007/s10515-025-00492-x","DOIUrl":null,"url":null,"abstract":"<div><p>The emergence of large language models (LLMs) such as ChatGPT has revolutionized many fields. In particular, recent advances in LLMs have triggered various studies examining the use of these models for software development tasks, such as program repair, code understanding, and code generation. Prior studies have shown the capability of ChatGPT in repairing conventional programs. However, debugging deep learning (DL) programs poses unique challenges since the decision logic is not directly encoded in the source code. This requires LLMs to not only parse the source code syntactically but also understand the intention of DL programs. Therefore, ChatGPT’s capability in repairing DL programs remains unknown. To fill this gap, our study aims to answer three research questions: (1) Can ChatGPT debug DL programs effectively? (2) How can ChatGPT’s repair performance be improved by prompting? (3) In which way can dialogue help facilitate the repair? Our study analyzes the typical information that is useful for prompt design and suggests enhanced prompt templates that are more efficient for repairing DL programs. On top of them, we summarize the dual perspectives (i.e., advantages and disadvantages) of ChatGPT’s ability, such as its handling of API misuse and recommendation, and its shortcomings in identifying default parameters. Our findings indicate that ChatGPT has the potential to repair DL programs effectively and that prompt engineering and dialogue can further improve its performance by providing more code intention. We also identified the key intentions that can enhance ChatGPT’s program repairing capability.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"32 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10515-025-00492-x.pdf","citationCount":"0","resultStr":"{\"title\":\"A study on prompt design, advantages and limitations of ChatGPT for deep learning program repair\",\"authors\":\"Jialun Cao,&nbsp;Meiziniu Li,&nbsp;Ming Wen,&nbsp;Shing-Chi Cheung\",\"doi\":\"10.1007/s10515-025-00492-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The emergence of large language models (LLMs) such as ChatGPT has revolutionized many fields. In particular, recent advances in LLMs have triggered various studies examining the use of these models for software development tasks, such as program repair, code understanding, and code generation. Prior studies have shown the capability of ChatGPT in repairing conventional programs. However, debugging deep learning (DL) programs poses unique challenges since the decision logic is not directly encoded in the source code. This requires LLMs to not only parse the source code syntactically but also understand the intention of DL programs. Therefore, ChatGPT’s capability in repairing DL programs remains unknown. To fill this gap, our study aims to answer three research questions: (1) Can ChatGPT debug DL programs effectively? (2) How can ChatGPT’s repair performance be improved by prompting? (3) In which way can dialogue help facilitate the repair? Our study analyzes the typical information that is useful for prompt design and suggests enhanced prompt templates that are more efficient for repairing DL programs. On top of them, we summarize the dual perspectives (i.e., advantages and disadvantages) of ChatGPT’s ability, such as its handling of API misuse and recommendation, and its shortcomings in identifying default parameters. Our findings indicate that ChatGPT has the potential to repair DL programs effectively and that prompt engineering and dialogue can further improve its performance by providing more code intention. We also identified the key intentions that can enhance ChatGPT’s program repairing capability.</p></div>\",\"PeriodicalId\":55414,\"journal\":{\"name\":\"Automated Software Engineering\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10515-025-00492-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10515-025-00492-x\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-025-00492-x","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

像ChatGPT这样的大型语言模型(llm)的出现已经彻底改变了许多领域。特别是,法学硕士的最新进展已经引发了各种研究,检查这些模型在软件开发任务中的使用,例如程序修复、代码理解和代码生成。先前的研究已经表明ChatGPT在修复常规程序方面的能力。然而,调试深度学习(DL)程序带来了独特的挑战,因为决策逻辑没有直接编码在源代码中。这就要求llm不仅要从语法上解析源代码,还要理解DL程序的意图。因此,ChatGPT在修复DL程序方面的能力仍然未知。为了填补这一空白,我们的研究旨在回答三个研究问题:(1)ChatGPT能有效地调试DL程序吗?(2)如何通过提示提高ChatGPT的修复性能?(3)对话在哪些方面有助于促进修复?我们的研究分析了对提示设计有用的典型信息,并提出了更有效地修复DL程序的增强提示模板。在此基础上,我们总结了ChatGPT能力的双重视角(即优点和缺点),例如它对API滥用和推荐的处理,以及它在识别默认参数方面的缺点。我们的研究结果表明,ChatGPT具有有效修复深度学习程序的潜力,并且通过提供更多的代码意图,提示工程和对话可以进一步提高其性能。我们还确定了可以增强ChatGPT程序修复能力的关键意图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study on prompt design, advantages and limitations of ChatGPT for deep learning program repair

The emergence of large language models (LLMs) such as ChatGPT has revolutionized many fields. In particular, recent advances in LLMs have triggered various studies examining the use of these models for software development tasks, such as program repair, code understanding, and code generation. Prior studies have shown the capability of ChatGPT in repairing conventional programs. However, debugging deep learning (DL) programs poses unique challenges since the decision logic is not directly encoded in the source code. This requires LLMs to not only parse the source code syntactically but also understand the intention of DL programs. Therefore, ChatGPT’s capability in repairing DL programs remains unknown. To fill this gap, our study aims to answer three research questions: (1) Can ChatGPT debug DL programs effectively? (2) How can ChatGPT’s repair performance be improved by prompting? (3) In which way can dialogue help facilitate the repair? Our study analyzes the typical information that is useful for prompt design and suggests enhanced prompt templates that are more efficient for repairing DL programs. On top of them, we summarize the dual perspectives (i.e., advantages and disadvantages) of ChatGPT’s ability, such as its handling of API misuse and recommendation, and its shortcomings in identifying default parameters. Our findings indicate that ChatGPT has the potential to repair DL programs effectively and that prompt engineering and dialogue can further improve its performance by providing more code intention. We also identified the key intentions that can enhance ChatGPT’s program repairing capability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automated Software Engineering
Automated Software Engineering 工程技术-计算机:软件工程
CiteScore
4.80
自引率
11.80%
发文量
51
审稿时长
>12 weeks
期刊介绍: This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes. Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信