使用进化算法的工程量子纠错码

Mark A. Webster;Dan E. Browne
{"title":"使用进化算法的工程量子纠错码","authors":"Mark A. Webster;Dan E. Browne","doi":"10.1109/TQE.2025.3538934","DOIUrl":null,"url":null,"abstract":"Quantum error correction and the use of quantum error correction codes are likely to be essential for the realization of practical quantum computing. Because the error models of quantum devices vary widely, quantum codes that are tailored for a particular error model may have much better performance. In this work, we present a novel evolutionary algorithm that searches for an optimal stabilizer code for a given error model, number of physical qubits, and number of encoded qubits. We demonstrate an efficient representation of stabilizer codes as binary strings, which allows for random generation of valid stabilizer codes as well as mutation and crossing of codes. Our algorithm finds stabilizer codes whose distance closely matches the best-known-distance codes of Grassl (2007) for <inline-formula><tex-math>$n \\leq 20$</tex-math></inline-formula> physical qubits. We perform a search for optimal distance Calderbank–Steane–Shor codes and compare their distance to the best known codes. Finally, we show that the algorithm can be used to optimize stabilizer codes for biased error models, demonstrating a significant improvement in the undetectable error rate for <inline-formula><tex-math>$[[12,1]]_{2}$</tex-math></inline-formula> codes versus the best-known-distance code with the same parameters. As part of this work, we also introduce an evolutionary algorithm QDistEvol for finding the distance of quantum error correction codes.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10874169","citationCount":"0","resultStr":"{\"title\":\"Engineering Quantum Error Correction Codes Using Evolutionary Algorithms\",\"authors\":\"Mark A. Webster;Dan E. Browne\",\"doi\":\"10.1109/TQE.2025.3538934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum error correction and the use of quantum error correction codes are likely to be essential for the realization of practical quantum computing. Because the error models of quantum devices vary widely, quantum codes that are tailored for a particular error model may have much better performance. In this work, we present a novel evolutionary algorithm that searches for an optimal stabilizer code for a given error model, number of physical qubits, and number of encoded qubits. We demonstrate an efficient representation of stabilizer codes as binary strings, which allows for random generation of valid stabilizer codes as well as mutation and crossing of codes. Our algorithm finds stabilizer codes whose distance closely matches the best-known-distance codes of Grassl (2007) for <inline-formula><tex-math>$n \\\\leq 20$</tex-math></inline-formula> physical qubits. We perform a search for optimal distance Calderbank–Steane–Shor codes and compare their distance to the best known codes. Finally, we show that the algorithm can be used to optimize stabilizer codes for biased error models, demonstrating a significant improvement in the undetectable error rate for <inline-formula><tex-math>$[[12,1]]_{2}$</tex-math></inline-formula> codes versus the best-known-distance code with the same parameters. As part of this work, we also introduce an evolutionary algorithm QDistEvol for finding the distance of quantum error correction codes.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"6 \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10874169\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10874169/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10874169/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子纠错和量子纠错码的使用可能是实现实际量子计算所必需的。由于量子器件的误差模型差异很大,针对特定误差模型量身定制的量子代码可能具有更好的性能。在这项工作中,我们提出了一种新的进化算法,该算法为给定的错误模型、物理量子比特数和编码量子比特数搜索最佳稳定器代码。我们证明了稳定码的有效表示为二进制字符串,它允许随机生成有效的稳定码以及代码的突变和交叉。我们的算法找到了稳定器代码,其距离与grasl(2007)对$n \leq 20$物理量子位的最著名的距离代码非常匹配。我们搜索了距离最优的Calderbank-Steane-Shor码,并将其与已知码的距离进行了比较。最后,我们证明了该算法可用于优化有偏差误差模型的稳定器代码,证明了与具有相同参数的已知距离代码相比,$[[12,1]]_{2}$代码的不可检测错误率有显着改善。作为这项工作的一部分,我们还引入了一种进化算法QDistEvol,用于寻找量子纠错码的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering Quantum Error Correction Codes Using Evolutionary Algorithms
Quantum error correction and the use of quantum error correction codes are likely to be essential for the realization of practical quantum computing. Because the error models of quantum devices vary widely, quantum codes that are tailored for a particular error model may have much better performance. In this work, we present a novel evolutionary algorithm that searches for an optimal stabilizer code for a given error model, number of physical qubits, and number of encoded qubits. We demonstrate an efficient representation of stabilizer codes as binary strings, which allows for random generation of valid stabilizer codes as well as mutation and crossing of codes. Our algorithm finds stabilizer codes whose distance closely matches the best-known-distance codes of Grassl (2007) for $n \leq 20$ physical qubits. We perform a search for optimal distance Calderbank–Steane–Shor codes and compare their distance to the best known codes. Finally, we show that the algorithm can be used to optimize stabilizer codes for biased error models, demonstrating a significant improvement in the undetectable error rate for $[[12,1]]_{2}$ codes versus the best-known-distance code with the same parameters. As part of this work, we also introduce an evolutionary algorithm QDistEvol for finding the distance of quantum error correction codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信