{"title":"NCQDs修饰FeOOH复合材料的高效电容式海水淡化","authors":"Yihan Xue , Xue Han , Jie Zhang, Xiaoru Wen","doi":"10.1016/j.actphy.2025.100072","DOIUrl":null,"url":null,"abstract":"<div><div>Capacitive deionization (CDI) is emerging as a novel technology for seawater purification, with the electrode material playing a crucial role in desalination performance. In this study, we designed a nitrogen-doped carbon quantum dots decorated iron oxide hydroxide (NCQDs/FeOOH) composite by a facile hydrothermal strategy and investigated as the CDI cathode for desalination application. Microstructural analyses reveal that the composite features a relatively uniform nanoparticle-assembled network, hierarchical pore alignment, and abundant porosity. Electrochemical tests confirm its outstanding capacitance property and conductivity. In an initial NaCl aqueous solution of 2000 mg L<sup>−1</sup> at an applied potential of 1.4 V, the GAC<sub>NaCl</sub> of NCQDs/FeOOH hybrid electrode reaches 56.52 mg g<sup>−1</sup>, along with the remarkable cycling durability. Furthermore, CV (cyclic voltammetry) and <em>ex situ</em> XPS (X-ray photoelectron spectroscopy) characterizations indicate the predominantly pseudocapacitive desalination mechanism.</div></div>","PeriodicalId":6964,"journal":{"name":"物理化学学报","volume":"41 7","pages":"Article 100072"},"PeriodicalIF":10.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient capacitive desalination over NCQDs decorated FeOOH composite\",\"authors\":\"Yihan Xue , Xue Han , Jie Zhang, Xiaoru Wen\",\"doi\":\"10.1016/j.actphy.2025.100072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Capacitive deionization (CDI) is emerging as a novel technology for seawater purification, with the electrode material playing a crucial role in desalination performance. In this study, we designed a nitrogen-doped carbon quantum dots decorated iron oxide hydroxide (NCQDs/FeOOH) composite by a facile hydrothermal strategy and investigated as the CDI cathode for desalination application. Microstructural analyses reveal that the composite features a relatively uniform nanoparticle-assembled network, hierarchical pore alignment, and abundant porosity. Electrochemical tests confirm its outstanding capacitance property and conductivity. In an initial NaCl aqueous solution of 2000 mg L<sup>−1</sup> at an applied potential of 1.4 V, the GAC<sub>NaCl</sub> of NCQDs/FeOOH hybrid electrode reaches 56.52 mg g<sup>−1</sup>, along with the remarkable cycling durability. Furthermore, CV (cyclic voltammetry) and <em>ex situ</em> XPS (X-ray photoelectron spectroscopy) characterizations indicate the predominantly pseudocapacitive desalination mechanism.</div></div>\",\"PeriodicalId\":6964,\"journal\":{\"name\":\"物理化学学报\",\"volume\":\"41 7\",\"pages\":\"Article 100072\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学学报\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1000681825000281\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学学报","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1000681825000281","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient capacitive desalination over NCQDs decorated FeOOH composite
Capacitive deionization (CDI) is emerging as a novel technology for seawater purification, with the electrode material playing a crucial role in desalination performance. In this study, we designed a nitrogen-doped carbon quantum dots decorated iron oxide hydroxide (NCQDs/FeOOH) composite by a facile hydrothermal strategy and investigated as the CDI cathode for desalination application. Microstructural analyses reveal that the composite features a relatively uniform nanoparticle-assembled network, hierarchical pore alignment, and abundant porosity. Electrochemical tests confirm its outstanding capacitance property and conductivity. In an initial NaCl aqueous solution of 2000 mg L−1 at an applied potential of 1.4 V, the GACNaCl of NCQDs/FeOOH hybrid electrode reaches 56.52 mg g−1, along with the remarkable cycling durability. Furthermore, CV (cyclic voltammetry) and ex situ XPS (X-ray photoelectron spectroscopy) characterizations indicate the predominantly pseudocapacitive desalination mechanism.