基于光谱特征分类分析软件(SSTAS)的植物病害分类

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Hardik Jayswal, Hetvi Desai, Hasti Vakani, Mithil Mistry, Nilesh Dubey
{"title":"基于光谱特征分类分析软件(SSTAS)的植物病害分类","authors":"Hardik Jayswal,&nbsp;Hetvi Desai,&nbsp;Hasti Vakani,&nbsp;Mithil Mistry,&nbsp;Nilesh Dubey","doi":"10.1016/j.simpa.2025.100744","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates a novel approach to plant disease classification, addressing cases where symptoms are not visually apparent. Traditional machine learning methods, reliant on observable symptoms, face challenges such as limited training data, high costs, and low interpretability. To overcome these limitations, a spectroscopy-based classification technique was developed. Experimental data, collected over 15 months at Anand Agriculture University, Gujarat, and Charotar University Space Research Centre, utilized spectral signatures (400–1000 nm) to detect mango diseases. The SSTAS Software, developed with a fine-tuned deep learning model, Deep-Spectro, demonstrated superior accuracy using an 80:20 training-to-testing ratio, surpassing existing models reported in prior research.</div></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"23 ","pages":"Article 100744"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plant diseases classification with Spectral Signature Taxonomy & Analysis Software (SSTAS)\",\"authors\":\"Hardik Jayswal,&nbsp;Hetvi Desai,&nbsp;Hasti Vakani,&nbsp;Mithil Mistry,&nbsp;Nilesh Dubey\",\"doi\":\"10.1016/j.simpa.2025.100744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates a novel approach to plant disease classification, addressing cases where symptoms are not visually apparent. Traditional machine learning methods, reliant on observable symptoms, face challenges such as limited training data, high costs, and low interpretability. To overcome these limitations, a spectroscopy-based classification technique was developed. Experimental data, collected over 15 months at Anand Agriculture University, Gujarat, and Charotar University Space Research Centre, utilized spectral signatures (400–1000 nm) to detect mango diseases. The SSTAS Software, developed with a fine-tuned deep learning model, Deep-Spectro, demonstrated superior accuracy using an 80:20 training-to-testing ratio, surpassing existing models reported in prior research.</div></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"23 \",\"pages\":\"Article 100744\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963825000041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963825000041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了植物病害分类的一种新方法,解决了症状不明显的情况。传统的机器学习方法依赖于可观察到的症状,面临着训练数据有限、成本高、可解释性低等挑战。为了克服这些限制,开发了一种基于光谱的分类技术。在古吉拉特邦阿南德农业大学和夏洛塔大学空间研究中心收集了15个多月的实验数据,利用光谱特征(400-1000 nm)检测芒果疾病。SSTAS软件采用微调深度学习模型deep - spectro开发,使用80:20的训练与测试比例显示出卓越的准确性,超过了先前研究报告的现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plant diseases classification with Spectral Signature Taxonomy & Analysis Software (SSTAS)

Plant diseases classification with Spectral Signature Taxonomy & Analysis Software (SSTAS)
This paper investigates a novel approach to plant disease classification, addressing cases where symptoms are not visually apparent. Traditional machine learning methods, reliant on observable symptoms, face challenges such as limited training data, high costs, and low interpretability. To overcome these limitations, a spectroscopy-based classification technique was developed. Experimental data, collected over 15 months at Anand Agriculture University, Gujarat, and Charotar University Space Research Centre, utilized spectral signatures (400–1000 nm) to detect mango diseases. The SSTAS Software, developed with a fine-tuned deep learning model, Deep-Spectro, demonstrated superior accuracy using an 80:20 training-to-testing ratio, surpassing existing models reported in prior research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信