无人机航拍图像密集小目标检测算法

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sheng Lu , Yangming Guo , Jiang Long , Zun Liu , Zhuqing Wang , Ying Li
{"title":"无人机航拍图像密集小目标检测算法","authors":"Sheng Lu ,&nbsp;Yangming Guo ,&nbsp;Jiang Long ,&nbsp;Zun Liu ,&nbsp;Zhuqing Wang ,&nbsp;Ying Li","doi":"10.1016/j.imavis.2025.105485","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicle (UAV) aerial images make dense small target detection challenging due to the complex background, small object size in the wide field of view, low resolution, and dense target distribution. Many aerial target detection networks and attention-based methods have been proposed to enhance the capability of dense small target detection, but there are still problems, such as insufficient effective information extraction, missed detection, and false detection of small targets in dense areas. Therefore, this paper proposes a novel dense small target detection algorithm (DSTDA) for UAV aerial images suitable for various high-altitude complex environments. The core component of the proposed DSTDA consists of the multi-axis attention units, the adaptive feature transformation mechanism, and the target-guided sample allocation strategy. Firstly, by introducing the multi-axis attention units into DSTDA, the limitation of DSTDA on global information perception can be addressed. Thus, the detailed features and spatial relationships of small targets at long distances can be sufficiently extracted by our proposed algorithm. Secondly, an adaptive feature transformation mechanism is designed to flexibly adjust the feature map according to the characteristics of the target distribution, which enables the DSTDA to focus more on densely populated target areas. Lastly, a goal-oriented sample allocation strategy is presented, combining coarse screening based on positional information and fine screening guided by target prediction information. By employing this dynamic sample allocation from coarse to fine, the detection performance of small and dense targets in complex backgrounds is further improved. These above innovative improvements empower the DSTDA with enhanced global perception and target-focusing capabilities, effectively addressing the challenges of detecting dense small targets in complex aerial scenes. Experimental validation was conducted on three publicly available datasets: VisDrone, SIMD, and CARPK. The results showed that the proposed DSTDA outperforms other state-of-the-art algorithms in terms of comprehensive performance. The algorithm significantly improves the issues of false alarms and missed detection in drone-based target detection, showcasing remarkable accuracy and real-time performance. It proves to be proficient in the task of detecting dense small targets in drone scenarios.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"156 ","pages":"Article 105485"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dense small target detection algorithm for UAV aerial imagery\",\"authors\":\"Sheng Lu ,&nbsp;Yangming Guo ,&nbsp;Jiang Long ,&nbsp;Zun Liu ,&nbsp;Zhuqing Wang ,&nbsp;Ying Li\",\"doi\":\"10.1016/j.imavis.2025.105485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unmanned aerial vehicle (UAV) aerial images make dense small target detection challenging due to the complex background, small object size in the wide field of view, low resolution, and dense target distribution. Many aerial target detection networks and attention-based methods have been proposed to enhance the capability of dense small target detection, but there are still problems, such as insufficient effective information extraction, missed detection, and false detection of small targets in dense areas. Therefore, this paper proposes a novel dense small target detection algorithm (DSTDA) for UAV aerial images suitable for various high-altitude complex environments. The core component of the proposed DSTDA consists of the multi-axis attention units, the adaptive feature transformation mechanism, and the target-guided sample allocation strategy. Firstly, by introducing the multi-axis attention units into DSTDA, the limitation of DSTDA on global information perception can be addressed. Thus, the detailed features and spatial relationships of small targets at long distances can be sufficiently extracted by our proposed algorithm. Secondly, an adaptive feature transformation mechanism is designed to flexibly adjust the feature map according to the characteristics of the target distribution, which enables the DSTDA to focus more on densely populated target areas. Lastly, a goal-oriented sample allocation strategy is presented, combining coarse screening based on positional information and fine screening guided by target prediction information. By employing this dynamic sample allocation from coarse to fine, the detection performance of small and dense targets in complex backgrounds is further improved. These above innovative improvements empower the DSTDA with enhanced global perception and target-focusing capabilities, effectively addressing the challenges of detecting dense small targets in complex aerial scenes. Experimental validation was conducted on three publicly available datasets: VisDrone, SIMD, and CARPK. The results showed that the proposed DSTDA outperforms other state-of-the-art algorithms in terms of comprehensive performance. The algorithm significantly improves the issues of false alarms and missed detection in drone-based target detection, showcasing remarkable accuracy and real-time performance. It proves to be proficient in the task of detecting dense small targets in drone scenarios.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"156 \",\"pages\":\"Article 105485\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885625000733\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625000733","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

无人机航拍图像背景复杂、视场范围小、分辨率低、目标分布密集,给密集小目标检测带来了挑战。为了提高密集小目标的检测能力,已经提出了许多航空目标检测网络和基于注意力的方法,但仍然存在有效信息提取不足、漏检、密集区域小目标误检等问题。为此,本文提出了一种适用于各种高空复杂环境的无人机航拍图像密集小目标检测算法(DSTDA)。该算法的核心部分包括多轴注意单元、自适应特征转换机制和目标导向样本分配策略。首先,通过在DSTDA中引入多轴注意单元,解决了DSTDA在全局信息感知上的局限性;因此,该算法可以充分提取远距离小目标的详细特征和空间关系。其次,设计自适应特征转换机制,根据目标分布的特点灵活调整特征映射,使DSTDA更加关注人口密集的目标区域;最后,提出了一种基于位置信息的粗筛选和目标预测信息指导下的精细筛选相结合的面向目标的样本分配策略。利用这种由粗到细的动态样本分配,进一步提高了复杂背景下小目标和密集目标的检测性能。上述创新改进增强了DSTDA的全球感知和目标聚焦能力,有效解决了在复杂航拍场景中探测密集小目标的挑战。实验验证在三个公开可用的数据集上进行:VisDrone, SIMD和CARPK。结果表明,所提出的DSTDA在综合性能方面优于其他最先进的算法。该算法显著改善了无人机目标检测中的虚警和漏检问题,具有较好的准确性和实时性。事实证明,在无人机场景下,它可以熟练地探测密集的小目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dense small target detection algorithm for UAV aerial imagery
Unmanned aerial vehicle (UAV) aerial images make dense small target detection challenging due to the complex background, small object size in the wide field of view, low resolution, and dense target distribution. Many aerial target detection networks and attention-based methods have been proposed to enhance the capability of dense small target detection, but there are still problems, such as insufficient effective information extraction, missed detection, and false detection of small targets in dense areas. Therefore, this paper proposes a novel dense small target detection algorithm (DSTDA) for UAV aerial images suitable for various high-altitude complex environments. The core component of the proposed DSTDA consists of the multi-axis attention units, the adaptive feature transformation mechanism, and the target-guided sample allocation strategy. Firstly, by introducing the multi-axis attention units into DSTDA, the limitation of DSTDA on global information perception can be addressed. Thus, the detailed features and spatial relationships of small targets at long distances can be sufficiently extracted by our proposed algorithm. Secondly, an adaptive feature transformation mechanism is designed to flexibly adjust the feature map according to the characteristics of the target distribution, which enables the DSTDA to focus more on densely populated target areas. Lastly, a goal-oriented sample allocation strategy is presented, combining coarse screening based on positional information and fine screening guided by target prediction information. By employing this dynamic sample allocation from coarse to fine, the detection performance of small and dense targets in complex backgrounds is further improved. These above innovative improvements empower the DSTDA with enhanced global perception and target-focusing capabilities, effectively addressing the challenges of detecting dense small targets in complex aerial scenes. Experimental validation was conducted on three publicly available datasets: VisDrone, SIMD, and CARPK. The results showed that the proposed DSTDA outperforms other state-of-the-art algorithms in terms of comprehensive performance. The algorithm significantly improves the issues of false alarms and missed detection in drone-based target detection, showcasing remarkable accuracy and real-time performance. It proves to be proficient in the task of detecting dense small targets in drone scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信