你在抄我的提示吗?基于水印的VPaaS视觉提示版权保护

IF 4.1 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Huali Ren , Anli Yan , Lang Li , Zhenxin Zhang , Ning Li , Chong-zhi Gao
{"title":"你在抄我的提示吗?基于水印的VPaaS视觉提示版权保护","authors":"Huali Ren ,&nbsp;Anli Yan ,&nbsp;Lang Li ,&nbsp;Zhenxin Zhang ,&nbsp;Ning Li ,&nbsp;Chong-zhi Gao","doi":"10.1016/j.csi.2025.103992","DOIUrl":null,"url":null,"abstract":"<div><div>Visual Prompt Learning (VPL) reduces resource consumption by avoiding updates to pre-trained model parameters and instead learns input perturbations, a visual prompts, added to downstream task data for predictions. Designing high-quality prompts requires significant expertise and time-consuming optimization, leading to the emergence of Visual Prompts as a Service (VPaaS), where developers monetize well-crafted prompts by providing them to authorized customers.However, in cloud computing environments, prompts can be easily copied and redistributed, posing serious risks to the intellectual property (IP) of VPaaS developers.</div><div>To address this, we propose WVPrompt, the first method for protecting visual prompts via watermarking in a black-box setting. WVPrompt consists of two components: prompt watermarking and prompt verification. Specifically, it utilizes a poison-only backdoor attack method to embed a watermark into the prompt, and then employs a hypothesis-testing approach for remote verification of prompt ownership. Extensive experiments were conducted on three well-known benchmark datasets and three popular pre-trained models: RN50, BiT-M, and Instagram. The experimental results demonstrate that WVPrompt is efficient, harmless, and robust to various adversarial operations, making it a reliable solution for securing visual prompts in cloud-based applications.</div></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"94 ","pages":"Article 103992"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Are you copying my prompt? Protecting the copyright of vision prompt for VPaaS via watermarking\",\"authors\":\"Huali Ren ,&nbsp;Anli Yan ,&nbsp;Lang Li ,&nbsp;Zhenxin Zhang ,&nbsp;Ning Li ,&nbsp;Chong-zhi Gao\",\"doi\":\"10.1016/j.csi.2025.103992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Visual Prompt Learning (VPL) reduces resource consumption by avoiding updates to pre-trained model parameters and instead learns input perturbations, a visual prompts, added to downstream task data for predictions. Designing high-quality prompts requires significant expertise and time-consuming optimization, leading to the emergence of Visual Prompts as a Service (VPaaS), where developers monetize well-crafted prompts by providing them to authorized customers.However, in cloud computing environments, prompts can be easily copied and redistributed, posing serious risks to the intellectual property (IP) of VPaaS developers.</div><div>To address this, we propose WVPrompt, the first method for protecting visual prompts via watermarking in a black-box setting. WVPrompt consists of two components: prompt watermarking and prompt verification. Specifically, it utilizes a poison-only backdoor attack method to embed a watermark into the prompt, and then employs a hypothesis-testing approach for remote verification of prompt ownership. Extensive experiments were conducted on three well-known benchmark datasets and three popular pre-trained models: RN50, BiT-M, and Instagram. The experimental results demonstrate that WVPrompt is efficient, harmless, and robust to various adversarial operations, making it a reliable solution for securing visual prompts in cloud-based applications.</div></div>\",\"PeriodicalId\":50635,\"journal\":{\"name\":\"Computer Standards & Interfaces\",\"volume\":\"94 \",\"pages\":\"Article 103992\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Standards & Interfaces\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920548925000212\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548925000212","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

视觉提示学习(VPL)通过避免更新预训练的模型参数来减少资源消耗,而是学习输入扰动,将视觉提示添加到下游任务数据中进行预测。设计高质量的提示需要大量的专业知识和耗时的优化,这导致了可视化提示即服务(VPaaS)的出现,开发人员通过向授权客户提供精心设计的提示来获利。然而,在云计算环境中,提示可以很容易地复制和重新分发,这对VPaaS开发人员的知识产权(IP)构成了严重的风险。为了解决这个问题,我们提出了WVPrompt,这是在黑盒设置中通过水印保护视觉提示的第一种方法。WVPrompt由提示水印和提示验证两部分组成。具体来说,它利用一种纯毒后门攻击方法将水印嵌入到提示符中,然后采用假设检验方法远程验证提示符的所有权。在三个知名的基准数据集和三个流行的预训练模型:RN50、BiT-M和Instagram上进行了大量的实验。实验结果表明,WVPrompt对各种对抗操作具有高效、无害和鲁棒性,使其成为基于云的应用程序中安全视觉提示的可靠解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Are you copying my prompt? Protecting the copyright of vision prompt for VPaaS via watermarking
Visual Prompt Learning (VPL) reduces resource consumption by avoiding updates to pre-trained model parameters and instead learns input perturbations, a visual prompts, added to downstream task data for predictions. Designing high-quality prompts requires significant expertise and time-consuming optimization, leading to the emergence of Visual Prompts as a Service (VPaaS), where developers monetize well-crafted prompts by providing them to authorized customers.However, in cloud computing environments, prompts can be easily copied and redistributed, posing serious risks to the intellectual property (IP) of VPaaS developers.
To address this, we propose WVPrompt, the first method for protecting visual prompts via watermarking in a black-box setting. WVPrompt consists of two components: prompt watermarking and prompt verification. Specifically, it utilizes a poison-only backdoor attack method to embed a watermark into the prompt, and then employs a hypothesis-testing approach for remote verification of prompt ownership. Extensive experiments were conducted on three well-known benchmark datasets and three popular pre-trained models: RN50, BiT-M, and Instagram. The experimental results demonstrate that WVPrompt is efficient, harmless, and robust to various adversarial operations, making it a reliable solution for securing visual prompts in cloud-based applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Standards & Interfaces
Computer Standards & Interfaces 工程技术-计算机:软件工程
CiteScore
11.90
自引率
16.00%
发文量
67
审稿时长
6 months
期刊介绍: The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking. Computer Standards & Interfaces is an international journal dealing specifically with these topics. The journal • Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels • Publishes critical comments on standards and standards activities • Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods • Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts • Stimulates relevant research by providing a specialised refereed medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信