T. Salahuddin , Mair Khan , Zoehib Mahmood , Muhammad Awais , Besam Al Alwan , M. Afzal
{"title":"温度变化对传感器表面附近麦克斯韦纳米流体黏度的影响","authors":"T. Salahuddin , Mair Khan , Zoehib Mahmood , Muhammad Awais , Besam Al Alwan , M. Afzal","doi":"10.1016/j.chaos.2025.116247","DOIUrl":null,"url":null,"abstract":"<div><div>The main focuses of this research work relays on the heat transfer rate, mass and velocity of Maxwell nanofluid flow in a sensor surface with a vertical channel formed by two infinite parallel plates. Researchers worldwide are working to enhance the use of nanofluids for a range of industrial applications, therefore, the Buongiorno nanofluid model is used to develop the heat and mass transport equations. The natural convection is used to analyze its impression on flow of Maxwell fluid because many transport mechanisms in engineering devices is generated by mixed convection flows. Furthermore, the investigation of Brownian diffusion, thermophoresis, enthalpy, activation energy, Soret and Dufour factors for such scenario is novel and important in many industrial disciplines. To obtain a non-linear system of differential equations, appropriate modified transformations are used. A numerical approach is used to solve the problem. For the concerned profiles, the dimensionless parameters are graphically displayed and described. The results show that buoyancy forces oppose the motion of the fluid so velocity field declines. The momentum boundary layer decays with growing values of permeability velocity, variable viscosity parameter and Maxwell number. The reverse trend is observed for Brownian diffusion and thermophoresis parameter Thermal boundary layer receives augmentations for higher values of Brownian diffusion, whereas the decline is noticed in concentration field. Soret factor and Dufour effect heighten the graph of temperature and concentration.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116247"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of varying the temperature dependent viscosity of Maxwell nanofluid flow near a sensor surface with activation enthalpy\",\"authors\":\"T. Salahuddin , Mair Khan , Zoehib Mahmood , Muhammad Awais , Besam Al Alwan , M. Afzal\",\"doi\":\"10.1016/j.chaos.2025.116247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main focuses of this research work relays on the heat transfer rate, mass and velocity of Maxwell nanofluid flow in a sensor surface with a vertical channel formed by two infinite parallel plates. Researchers worldwide are working to enhance the use of nanofluids for a range of industrial applications, therefore, the Buongiorno nanofluid model is used to develop the heat and mass transport equations. The natural convection is used to analyze its impression on flow of Maxwell fluid because many transport mechanisms in engineering devices is generated by mixed convection flows. Furthermore, the investigation of Brownian diffusion, thermophoresis, enthalpy, activation energy, Soret and Dufour factors for such scenario is novel and important in many industrial disciplines. To obtain a non-linear system of differential equations, appropriate modified transformations are used. A numerical approach is used to solve the problem. For the concerned profiles, the dimensionless parameters are graphically displayed and described. The results show that buoyancy forces oppose the motion of the fluid so velocity field declines. The momentum boundary layer decays with growing values of permeability velocity, variable viscosity parameter and Maxwell number. The reverse trend is observed for Brownian diffusion and thermophoresis parameter Thermal boundary layer receives augmentations for higher values of Brownian diffusion, whereas the decline is noticed in concentration field. Soret factor and Dufour effect heighten the graph of temperature and concentration.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"194 \",\"pages\":\"Article 116247\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925002607\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002607","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Effect of varying the temperature dependent viscosity of Maxwell nanofluid flow near a sensor surface with activation enthalpy
The main focuses of this research work relays on the heat transfer rate, mass and velocity of Maxwell nanofluid flow in a sensor surface with a vertical channel formed by two infinite parallel plates. Researchers worldwide are working to enhance the use of nanofluids for a range of industrial applications, therefore, the Buongiorno nanofluid model is used to develop the heat and mass transport equations. The natural convection is used to analyze its impression on flow of Maxwell fluid because many transport mechanisms in engineering devices is generated by mixed convection flows. Furthermore, the investigation of Brownian diffusion, thermophoresis, enthalpy, activation energy, Soret and Dufour factors for such scenario is novel and important in many industrial disciplines. To obtain a non-linear system of differential equations, appropriate modified transformations are used. A numerical approach is used to solve the problem. For the concerned profiles, the dimensionless parameters are graphically displayed and described. The results show that buoyancy forces oppose the motion of the fluid so velocity field declines. The momentum boundary layer decays with growing values of permeability velocity, variable viscosity parameter and Maxwell number. The reverse trend is observed for Brownian diffusion and thermophoresis parameter Thermal boundary layer receives augmentations for higher values of Brownian diffusion, whereas the decline is noticed in concentration field. Soret factor and Dufour effect heighten the graph of temperature and concentration.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.