温度变化对传感器表面附近麦克斯韦纳米流体黏度的影响

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
T. Salahuddin , Mair Khan , Zoehib Mahmood , Muhammad Awais , Besam Al Alwan , M. Afzal
{"title":"温度变化对传感器表面附近麦克斯韦纳米流体黏度的影响","authors":"T. Salahuddin ,&nbsp;Mair Khan ,&nbsp;Zoehib Mahmood ,&nbsp;Muhammad Awais ,&nbsp;Besam Al Alwan ,&nbsp;M. Afzal","doi":"10.1016/j.chaos.2025.116247","DOIUrl":null,"url":null,"abstract":"<div><div>The main focuses of this research work relays on the heat transfer rate, mass and velocity of Maxwell nanofluid flow in a sensor surface with a vertical channel formed by two infinite parallel plates. Researchers worldwide are working to enhance the use of nanofluids for a range of industrial applications, therefore, the Buongiorno nanofluid model is used to develop the heat and mass transport equations. The natural convection is used to analyze its impression on flow of Maxwell fluid because many transport mechanisms in engineering devices is generated by mixed convection flows. Furthermore, the investigation of Brownian diffusion, thermophoresis, enthalpy, activation energy, Soret and Dufour factors for such scenario is novel and important in many industrial disciplines. To obtain a non-linear system of differential equations, appropriate modified transformations are used. A numerical approach is used to solve the problem. For the concerned profiles, the dimensionless parameters are graphically displayed and described. The results show that buoyancy forces oppose the motion of the fluid so velocity field declines. The momentum boundary layer decays with growing values of permeability velocity, variable viscosity parameter and Maxwell number. The reverse trend is observed for Brownian diffusion and thermophoresis parameter Thermal boundary layer receives augmentations for higher values of Brownian diffusion, whereas the decline is noticed in concentration field. Soret factor and Dufour effect heighten the graph of temperature and concentration.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"194 ","pages":"Article 116247"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of varying the temperature dependent viscosity of Maxwell nanofluid flow near a sensor surface with activation enthalpy\",\"authors\":\"T. Salahuddin ,&nbsp;Mair Khan ,&nbsp;Zoehib Mahmood ,&nbsp;Muhammad Awais ,&nbsp;Besam Al Alwan ,&nbsp;M. Afzal\",\"doi\":\"10.1016/j.chaos.2025.116247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main focuses of this research work relays on the heat transfer rate, mass and velocity of Maxwell nanofluid flow in a sensor surface with a vertical channel formed by two infinite parallel plates. Researchers worldwide are working to enhance the use of nanofluids for a range of industrial applications, therefore, the Buongiorno nanofluid model is used to develop the heat and mass transport equations. The natural convection is used to analyze its impression on flow of Maxwell fluid because many transport mechanisms in engineering devices is generated by mixed convection flows. Furthermore, the investigation of Brownian diffusion, thermophoresis, enthalpy, activation energy, Soret and Dufour factors for such scenario is novel and important in many industrial disciplines. To obtain a non-linear system of differential equations, appropriate modified transformations are used. A numerical approach is used to solve the problem. For the concerned profiles, the dimensionless parameters are graphically displayed and described. The results show that buoyancy forces oppose the motion of the fluid so velocity field declines. The momentum boundary layer decays with growing values of permeability velocity, variable viscosity parameter and Maxwell number. The reverse trend is observed for Brownian diffusion and thermophoresis parameter Thermal boundary layer receives augmentations for higher values of Brownian diffusion, whereas the decline is noticed in concentration field. Soret factor and Dufour effect heighten the graph of temperature and concentration.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"194 \",\"pages\":\"Article 116247\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925002607\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925002607","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究工作的主要重点是研究麦克斯韦纳米流体在由两个无限平行板组成的垂直通道的传感器表面的传热速率、质量和速度。世界各地的研究人员都在努力提高纳米流体在一系列工业应用中的应用,因此,Buongiorno纳米流体模型被用于开发热量和质量传递方程。由于工程装置中的许多输运机制都是由混合对流产生的,因此采用自然对流来分析其对麦克斯韦流体流动的影响。此外,布朗扩散、热渗透、焓、活化能、Soret和Dufour因子在这种情况下的研究在许多工业学科中都是新颖和重要的。为了得到一个非线性的微分方程组,使用了适当的修正变换。用数值方法来解决这个问题。对于相关的轮廓,无量纲参数以图形方式显示和描述。结果表明,浮力与流体的运动相反,速度场减小。动量边界层随渗透速度、变黏度参数和麦克斯韦数的增大而衰减。布朗扩散和热泳参数的变化趋势相反,当布朗扩散值较高时,热边界层增大,而浓度场则减小。Soret因子和Dufour效应使温度和浓度曲线变大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of varying the temperature dependent viscosity of Maxwell nanofluid flow near a sensor surface with activation enthalpy
The main focuses of this research work relays on the heat transfer rate, mass and velocity of Maxwell nanofluid flow in a sensor surface with a vertical channel formed by two infinite parallel plates. Researchers worldwide are working to enhance the use of nanofluids for a range of industrial applications, therefore, the Buongiorno nanofluid model is used to develop the heat and mass transport equations. The natural convection is used to analyze its impression on flow of Maxwell fluid because many transport mechanisms in engineering devices is generated by mixed convection flows. Furthermore, the investigation of Brownian diffusion, thermophoresis, enthalpy, activation energy, Soret and Dufour factors for such scenario is novel and important in many industrial disciplines. To obtain a non-linear system of differential equations, appropriate modified transformations are used. A numerical approach is used to solve the problem. For the concerned profiles, the dimensionless parameters are graphically displayed and described. The results show that buoyancy forces oppose the motion of the fluid so velocity field declines. The momentum boundary layer decays with growing values of permeability velocity, variable viscosity parameter and Maxwell number. The reverse trend is observed for Brownian diffusion and thermophoresis parameter Thermal boundary layer receives augmentations for higher values of Brownian diffusion, whereas the decline is noticed in concentration field. Soret factor and Dufour effect heighten the graph of temperature and concentration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信