{"title":"Optimal design of hybrid multigeneration systems to enhance sustainability in the residential sector","authors":"Patrizia Beraldi, Angelo Algieri, Gennaro Lavia","doi":"10.1016/j.compchemeng.2025.109051","DOIUrl":null,"url":null,"abstract":"<div><div>The growing demand for sustainable energy solutions necessitates innovative approaches that balance environmental and economic goals. This study proposes a comprehensive optimization framework for designing and managing hybrid multigeneration systems in the residential sector. The proposed system integrates renewable and non-renewable energy technologies, energy storage devices, and electric vehicle batteries, addressing bi-objective goals of cost minimization and greenhouse gas emission reduction. A case study of a residential complex in Italy demonstrates the model’s efficacy, achieving significant cost savings and emission reductions compared to conventional systems. The results highlight optimal configurations, trade-offs, and actionable insights for decision-makers. This work provides a valuable tool for accelerating the adoption of sustainable energy systems and achieving carbon-neutrality targets in residential buildings.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"198 ","pages":"Article 109051"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000559","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Optimal design of hybrid multigeneration systems to enhance sustainability in the residential sector
The growing demand for sustainable energy solutions necessitates innovative approaches that balance environmental and economic goals. This study proposes a comprehensive optimization framework for designing and managing hybrid multigeneration systems in the residential sector. The proposed system integrates renewable and non-renewable energy technologies, energy storage devices, and electric vehicle batteries, addressing bi-objective goals of cost minimization and greenhouse gas emission reduction. A case study of a residential complex in Italy demonstrates the model’s efficacy, achieving significant cost savings and emission reductions compared to conventional systems. The results highlight optimal configurations, trade-offs, and actionable insights for decision-makers. This work provides a valuable tool for accelerating the adoption of sustainable energy systems and achieving carbon-neutrality targets in residential buildings.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.