{"title":"New results for drift estimation in inhomogeneous stochastic differential equations","authors":"Fabienne Comte, Valentine Genon-Catalot","doi":"10.1016/j.jmva.2025.105415","DOIUrl":null,"url":null,"abstract":"<div><div>We consider <span><math><mi>N</mi></math></span> independent and identically distributed (<em>i.i.d.</em>) stochastic processes <span><math><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>j</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mi>t</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></mrow><mo>)</mo></mrow></math></span>, <span><math><mrow><mi>j</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi><mo>}</mo></mrow></mrow></math></span>, defined by a one-dimensional stochastic differential equation (SDE) with time-dependent drift and diffusion coefficient. In this context, the nonparametric estimation of a general drift function <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> from a continuous observation of the <span><math><mi>N</mi></math></span> sample paths on <span><math><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>]</mo></mrow></math></span> has never been investigated. Considering a set <span><math><mrow><msub><mrow><mi>I</mi></mrow><mrow><mi>ϵ</mi></mrow></msub><mo>=</mo><mrow><mo>[</mo><mi>ϵ</mi><mo>,</mo><mi>T</mi><mo>]</mo></mrow><mo>×</mo><mi>A</mi></mrow></math></span>, with <span><math><mrow><mi>ϵ</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>A</mi><mo>⊂</mo><mi>R</mi></mrow></math></span>, we build by a projection method an estimator of <span><math><mi>b</mi></math></span> on <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>ϵ</mi></mrow></msub></math></span>. As the function is bivariate, this amounts to estimating a matrix of projection coefficients instead of a vector for univariate functions. We make use of Kronecker products, which simplifies the mathematical treatment of the problem. We study the risk of the estimator and distinguish the case where <span><math><mrow><mi>ϵ</mi><mo>=</mo><mn>0</mn></mrow></math></span> and the case <span><math><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>A</mi><mo>=</mo><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></mrow></math></span> compact. In the latter case, we investigate rates of convergence and prove a lower bound showing that our estimator is minimax. We propose a data-driven choice of the projection space dimension leading to an adaptive estimator. Examples of models and numerical simulation results are proposed. The method is easy to implement and works well, although computationally slower than for the estimation of a univariate function.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105415"},"PeriodicalIF":1.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000107","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑 N 个独立且同分布(i.i.d.)的随机过程 (Xj(t),t∈[0,T]),j∈{1,...,N},它们由一维随机微分方程(SDE)定义,具有随时间变化的漂移和扩散系数。在这种情况下,从 [0,T] 上 N 个样本路径的连续观测中对一般漂移函数 b(t,x) 进行非参数估计的问题从未被研究过。考虑到集合 Iϵ=[ϵ,T]×A,其中ϵ≥0 且 A⊂R,我们用投影法在 Iϵ 上建立一个 b 的估计器。由于函数是双变量的,这相当于估计一个投影系数矩阵,而不是单变量函数的向量。我们利用 Kronecker 积简化了问题的数学处理。我们研究了估计器的风险,并区分了 ϵ=0 的情况和 ϵ>0 且 A=[a,b] 紧凑的情况。在后一种情况下,我们研究了收敛率,并证明了一个下限,表明我们的估计器是最小的。我们提出了一种数据驱动的投影空间维度选择,从而产生了一种自适应估计器。我们还提出了模型实例和数值模拟结果。该方法易于实现且运行良好,尽管与单变量函数估计相比计算速度较慢。
New results for drift estimation in inhomogeneous stochastic differential equations
We consider independent and identically distributed (i.i.d.) stochastic processes , , defined by a one-dimensional stochastic differential equation (SDE) with time-dependent drift and diffusion coefficient. In this context, the nonparametric estimation of a general drift function from a continuous observation of the sample paths on has never been investigated. Considering a set , with and , we build by a projection method an estimator of on . As the function is bivariate, this amounts to estimating a matrix of projection coefficients instead of a vector for univariate functions. We make use of Kronecker products, which simplifies the mathematical treatment of the problem. We study the risk of the estimator and distinguish the case where and the case and compact. In the latter case, we investigate rates of convergence and prove a lower bound showing that our estimator is minimax. We propose a data-driven choice of the projection space dimension leading to an adaptive estimator. Examples of models and numerical simulation results are proposed. The method is easy to implement and works well, although computationally slower than for the estimation of a univariate function.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.