利用非线性尖峰神经 P 系统的新型多尺度突出物体检测框架

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Nan Zhou, Minglong He, Hong Peng, Zhicai Liu
{"title":"利用非线性尖峰神经 P 系统的新型多尺度突出物体检测框架","authors":"Nan Zhou,&nbsp;Minglong He,&nbsp;Hong Peng,&nbsp;Zhicai Liu","doi":"10.1016/j.neucom.2025.129821","DOIUrl":null,"url":null,"abstract":"<div><div>Salient object detection (SOD) is fundamental to computer vision applications ranging from autonomous driving and surveillance to medical imaging. Despite significant progress, existing methods struggle to effectively model multi-scale features and their complex interdependencies, particularly in challenging real-world scenarios with complex backgrounds and varying scales. To address these limitations, this paper proposes a novel detection framework that leverages the hierarchical processing capabilities of nonlinear spiking neural P (NSNP) systems. The proposed framework introduces three key innovations: a bio-inspired convolution mechanism that captures fine-grained local features with neural dynamics; a semantic learning module enhanced by Contextual Transformer Attention for comprehensive global context understanding; and an adaptive mixed attention-based fusion strategy that optimizes cross-scale feature integration. The experimental results on four challenging benchmark datasets demonstrate that the proposed method outperforms fourteen other state-of-the-art methods, achieving average improvements of 1.02%, 1.3%, 2.3%, and 0.1% on the four evaluation metrics (<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>β</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span>, and <span><math><mrow><mi>M</mi><mi>A</mi><mi>E</mi></mrow></math></span>), respectively. These advances validate the potential of spiking neural P systems in salient object detection, while opening new possibilities for bio-inspired approaches in visual computing.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"634 ","pages":"Article 129821"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel multi-scale salient object detection framework utilizing nonlinear spiking neural P systems\",\"authors\":\"Nan Zhou,&nbsp;Minglong He,&nbsp;Hong Peng,&nbsp;Zhicai Liu\",\"doi\":\"10.1016/j.neucom.2025.129821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Salient object detection (SOD) is fundamental to computer vision applications ranging from autonomous driving and surveillance to medical imaging. Despite significant progress, existing methods struggle to effectively model multi-scale features and their complex interdependencies, particularly in challenging real-world scenarios with complex backgrounds and varying scales. To address these limitations, this paper proposes a novel detection framework that leverages the hierarchical processing capabilities of nonlinear spiking neural P (NSNP) systems. The proposed framework introduces three key innovations: a bio-inspired convolution mechanism that captures fine-grained local features with neural dynamics; a semantic learning module enhanced by Contextual Transformer Attention for comprehensive global context understanding; and an adaptive mixed attention-based fusion strategy that optimizes cross-scale feature integration. The experimental results on four challenging benchmark datasets demonstrate that the proposed method outperforms fourteen other state-of-the-art methods, achieving average improvements of 1.02%, 1.3%, 2.3%, and 0.1% on the four evaluation metrics (<span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>, <span><math><msubsup><mrow><mi>E</mi></mrow><mrow><mi>ξ</mi></mrow><mrow><mi>m</mi></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>β</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span>, and <span><math><mrow><mi>M</mi><mi>A</mi><mi>E</mi></mrow></math></span>), respectively. These advances validate the potential of spiking neural P systems in salient object detection, while opening new possibilities for bio-inspired approaches in visual computing.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"634 \",\"pages\":\"Article 129821\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092523122500493X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122500493X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel multi-scale salient object detection framework utilizing nonlinear spiking neural P systems
Salient object detection (SOD) is fundamental to computer vision applications ranging from autonomous driving and surveillance to medical imaging. Despite significant progress, existing methods struggle to effectively model multi-scale features and their complex interdependencies, particularly in challenging real-world scenarios with complex backgrounds and varying scales. To address these limitations, this paper proposes a novel detection framework that leverages the hierarchical processing capabilities of nonlinear spiking neural P (NSNP) systems. The proposed framework introduces three key innovations: a bio-inspired convolution mechanism that captures fine-grained local features with neural dynamics; a semantic learning module enhanced by Contextual Transformer Attention for comprehensive global context understanding; and an adaptive mixed attention-based fusion strategy that optimizes cross-scale feature integration. The experimental results on four challenging benchmark datasets demonstrate that the proposed method outperforms fourteen other state-of-the-art methods, achieving average improvements of 1.02%, 1.3%, 2.3%, and 0.1% on the four evaluation metrics (Sm, Eξm, Fβw, and MAE), respectively. These advances validate the potential of spiking neural P systems in salient object detection, while opening new possibilities for bio-inspired approaches in visual computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信