YieldFCP:通过细粒度交叉模态预训练增强反应产率预测

Runhan Shi, Gufeng Yu, Letian Chen, Yang Yang
{"title":"YieldFCP:通过细粒度交叉模态预训练增强反应产率预测","authors":"Runhan Shi,&nbsp;Gufeng Yu,&nbsp;Letian Chen,&nbsp;Yang Yang","doi":"10.1016/j.aichem.2025.100085","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting chemical reaction yields is a critical yet challenging task in organic chemistry. While integrating multi-modal information has shown promise, existing methods typically encode the entire reaction in different modalities and then align these embeddings for the same reactions. Such a coarse-grained modal fusion strategy may neglect atomic-level interactions crucial for accurate predictions. Recognizing the crucial role of modal fusion in multi-modal learning and the limitations of current methods in real-world scenarios, we propose YieldFCP, a reaction <span><math><munder><mrow><mtext>Yield</mtext></mrow><mo>̲</mo></munder></math></span> prediction model based on <span><math><munder><mrow><mtext>F</mtext></mrow><mo>̲</mo></munder></math></span>ine-grained <span><math><munder><mrow><mtext>C</mtext></mrow><mo>̲</mo></munder></math></span>ross-modal <span><math><munder><mrow><mtext>P</mtext></mrow><mo>̲</mo></munder></math></span>re-training. Its cross-modal projector links the molecular SMILES sequence with 3D geometric data, focusing on the atomic-level interactions to achieve fine-grained modal fusion and enhance yield prediction. YieldFCP is pre-trained on a large-scale dataset leveraging cross-modal self-supervised learning techniques. Experimental results on the high-throughput experiments, real-world electronic laboratory notebook, and real-world organic reaction publication datasets demonstrate the effectiveness of our approach. Particularly, YieldFCP outperforms the state-of-the-art methods in real-world scenarios and successfully recognizes key components that determine reaction yields with valuable interpretability.</div></div>","PeriodicalId":72302,"journal":{"name":"Artificial intelligence chemistry","volume":"3 1","pages":"Article 100085"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YieldFCP: Enhancing Reaction Yield Prediction via Fine-grained Cross-modal Pre-training\",\"authors\":\"Runhan Shi,&nbsp;Gufeng Yu,&nbsp;Letian Chen,&nbsp;Yang Yang\",\"doi\":\"10.1016/j.aichem.2025.100085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting chemical reaction yields is a critical yet challenging task in organic chemistry. While integrating multi-modal information has shown promise, existing methods typically encode the entire reaction in different modalities and then align these embeddings for the same reactions. Such a coarse-grained modal fusion strategy may neglect atomic-level interactions crucial for accurate predictions. Recognizing the crucial role of modal fusion in multi-modal learning and the limitations of current methods in real-world scenarios, we propose YieldFCP, a reaction <span><math><munder><mrow><mtext>Yield</mtext></mrow><mo>̲</mo></munder></math></span> prediction model based on <span><math><munder><mrow><mtext>F</mtext></mrow><mo>̲</mo></munder></math></span>ine-grained <span><math><munder><mrow><mtext>C</mtext></mrow><mo>̲</mo></munder></math></span>ross-modal <span><math><munder><mrow><mtext>P</mtext></mrow><mo>̲</mo></munder></math></span>re-training. Its cross-modal projector links the molecular SMILES sequence with 3D geometric data, focusing on the atomic-level interactions to achieve fine-grained modal fusion and enhance yield prediction. YieldFCP is pre-trained on a large-scale dataset leveraging cross-modal self-supervised learning techniques. Experimental results on the high-throughput experiments, real-world electronic laboratory notebook, and real-world organic reaction publication datasets demonstrate the effectiveness of our approach. Particularly, YieldFCP outperforms the state-of-the-art methods in real-world scenarios and successfully recognizes key components that determine reaction yields with valuable interpretability.</div></div>\",\"PeriodicalId\":72302,\"journal\":{\"name\":\"Artificial intelligence chemistry\",\"volume\":\"3 1\",\"pages\":\"Article 100085\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949747725000028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949747725000028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在有机化学中,预测化学反应产率是一项关键而又具有挑战性的任务。虽然整合多模态信息显示出了希望,但现有的方法通常是以不同的模态对整个反应进行编码,然后对相同的反应对齐这些嵌入。这种粗粒度的模态融合策略可能会忽略对准确预测至关重要的原子级相互作用。认识到模态融合在多模态学习中的关键作用以及当前方法在现实场景中的局限性,我们提出了YieldFCP,这是一个基于F -细粒度C -交叉模态P -再训练的反应产率预测模型。它的跨模态投影仪将分子SMILES序列与3D几何数据连接起来,专注于原子水平的相互作用,以实现细粒度模态融合并提高产量预测。YieldFCP利用跨模态自监督学习技术在大规模数据集上进行预训练。在高通量实验、真实世界的电子实验室笔记和真实世界的有机反应出版物数据集上的实验结果证明了我们方法的有效性。特别是,YieldFCP在现实场景中优于最先进的方法,并成功识别出决定反应产率的关键成分,具有有价值的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YieldFCP: Enhancing Reaction Yield Prediction via Fine-grained Cross-modal Pre-training
Predicting chemical reaction yields is a critical yet challenging task in organic chemistry. While integrating multi-modal information has shown promise, existing methods typically encode the entire reaction in different modalities and then align these embeddings for the same reactions. Such a coarse-grained modal fusion strategy may neglect atomic-level interactions crucial for accurate predictions. Recognizing the crucial role of modal fusion in multi-modal learning and the limitations of current methods in real-world scenarios, we propose YieldFCP, a reaction Yield̲ prediction model based on F̲ine-grained C̲ross-modal P̲re-training. Its cross-modal projector links the molecular SMILES sequence with 3D geometric data, focusing on the atomic-level interactions to achieve fine-grained modal fusion and enhance yield prediction. YieldFCP is pre-trained on a large-scale dataset leveraging cross-modal self-supervised learning techniques. Experimental results on the high-throughput experiments, real-world electronic laboratory notebook, and real-world organic reaction publication datasets demonstrate the effectiveness of our approach. Particularly, YieldFCP outperforms the state-of-the-art methods in real-world scenarios and successfully recognizes key components that determine reaction yields with valuable interpretability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial intelligence chemistry
Artificial intelligence chemistry Chemistry (General)
自引率
0.00%
发文量
0
审稿时长
21 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信