{"title":"利用图拉普拉奇探索数据中的奇点:一种明确的方法","authors":"Martin Andersson, Benny Avelin","doi":"10.1016/j.jcmds.2025.100113","DOIUrl":null,"url":null,"abstract":"<div><div>We develop theory and methods that use the graph Laplacian to analyze the geometry of the underlying manifolds of datasets. Our theory provides theoretical guarantees and explicit bounds on the functional forms of the graph Laplacian when it acts on functions defined close to singularities of the underlying manifold. We use these explicit bounds to develop tests for singularities and propose methods that can be used to estimate geometric properties of singularities in the datasets.</div></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"14 ","pages":"Article 100113"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring singularities in data with the graph Laplacian: An explicit approach\",\"authors\":\"Martin Andersson, Benny Avelin\",\"doi\":\"10.1016/j.jcmds.2025.100113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We develop theory and methods that use the graph Laplacian to analyze the geometry of the underlying manifolds of datasets. Our theory provides theoretical guarantees and explicit bounds on the functional forms of the graph Laplacian when it acts on functions defined close to singularities of the underlying manifold. We use these explicit bounds to develop tests for singularities and propose methods that can be used to estimate geometric properties of singularities in the datasets.</div></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"14 \",\"pages\":\"Article 100113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415825000057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415825000057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring singularities in data with the graph Laplacian: An explicit approach
We develop theory and methods that use the graph Laplacian to analyze the geometry of the underlying manifolds of datasets. Our theory provides theoretical guarantees and explicit bounds on the functional forms of the graph Laplacian when it acts on functions defined close to singularities of the underlying manifold. We use these explicit bounds to develop tests for singularities and propose methods that can be used to estimate geometric properties of singularities in the datasets.