{"title":"巴西Jacupiranga杂岩岩浆岩中的围岩同化作用:结构、矿物和全岩地球化学特征","authors":"Luanna Chmyz , Rogério Guitarrari Azzone , Excelso Ruberti , Vincenza Guarino","doi":"10.1016/j.chemer.2024.126218","DOIUrl":null,"url":null,"abstract":"<div><div>Carbonatite magmas, with their unique low SiO<sub>2</sub> and high volatile compositions, can be extremely reactive with silicate country rocks, driving large chemical exchanges through processes such as magmatic assimilation and fenitization. In this study, we investigate the assimilation process between Jacupiranga carbonatite and clinopyroxenite xenoliths, focusing on the textural, mineralogical, and whole-rock geochemical features of the resulting reaction rocks. These data are compared with those from fluid-derived phlogopitites from the Alto Paranaíba Igneous Province, to evaluate the processes behind the reaction between carbonatite magma and ultramafic rocks. We report the first trace element data on phlogopites from Brazilian carbonatites and associated reaction rocks. Textural, mineralogical and whole-rock geochemical features can be interpreted as the effect of carbonatite magma assimilation of ultramafic rocks, as seen in the Jacupiranga complex. Thermal and chemical gradients promote unidirectional solidification, allowing the comb-layering formation. Xenolith boundaries act as orbicule cores, favoring nucleation and the crystallization of the reaction assemblage. Phlogopites from Jacupiranga reaction rocks exhibit a wide range of estimated temperatures (550 up to >1000 °C), although diffusive re-equilibration during magmatic and post-magmatic cooling cannot be ruled out. Reaction phlogopites are enriched in Ni and Co near the clinopyroxenite, with depletion of these elements towards the carbonatite front. Conversely, reaction phlogopites near the carbonatite are enriched in Ba, highlighting the effect of the carbonatite melt in the generation of the reaction rocks, which gradually decreases towards the clinopyroxenite contact. The reaction rocks have whole-rock major and trace element contents intermediate between those of the clinopyroxenites and the carbonatite front. Partition coefficients between calcite and apatite in the reaction rocks have flat, somewhat U-shaped patterns for REE, typical signatures of primary igneous calcite and consistent with an origin by magmatic assimilation. This study shows that several imprints of assimilation of ultramafic wall rocks by carbonatite magmas are preserved in the resulting reaction rocks, allowing such a mechanism to be traced by using textural, mineralogical, and whole-rock geochemical evidence.</div></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"85 1","pages":"Article 126218"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wall rock assimilation in carbonatite magmas: Textural, mineral and whole-rock geochemical signatures in the Jacupiranga complex, Brazil\",\"authors\":\"Luanna Chmyz , Rogério Guitarrari Azzone , Excelso Ruberti , Vincenza Guarino\",\"doi\":\"10.1016/j.chemer.2024.126218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Carbonatite magmas, with their unique low SiO<sub>2</sub> and high volatile compositions, can be extremely reactive with silicate country rocks, driving large chemical exchanges through processes such as magmatic assimilation and fenitization. In this study, we investigate the assimilation process between Jacupiranga carbonatite and clinopyroxenite xenoliths, focusing on the textural, mineralogical, and whole-rock geochemical features of the resulting reaction rocks. These data are compared with those from fluid-derived phlogopitites from the Alto Paranaíba Igneous Province, to evaluate the processes behind the reaction between carbonatite magma and ultramafic rocks. We report the first trace element data on phlogopites from Brazilian carbonatites and associated reaction rocks. Textural, mineralogical and whole-rock geochemical features can be interpreted as the effect of carbonatite magma assimilation of ultramafic rocks, as seen in the Jacupiranga complex. Thermal and chemical gradients promote unidirectional solidification, allowing the comb-layering formation. Xenolith boundaries act as orbicule cores, favoring nucleation and the crystallization of the reaction assemblage. Phlogopites from Jacupiranga reaction rocks exhibit a wide range of estimated temperatures (550 up to >1000 °C), although diffusive re-equilibration during magmatic and post-magmatic cooling cannot be ruled out. Reaction phlogopites are enriched in Ni and Co near the clinopyroxenite, with depletion of these elements towards the carbonatite front. Conversely, reaction phlogopites near the carbonatite are enriched in Ba, highlighting the effect of the carbonatite melt in the generation of the reaction rocks, which gradually decreases towards the clinopyroxenite contact. The reaction rocks have whole-rock major and trace element contents intermediate between those of the clinopyroxenites and the carbonatite front. Partition coefficients between calcite and apatite in the reaction rocks have flat, somewhat U-shaped patterns for REE, typical signatures of primary igneous calcite and consistent with an origin by magmatic assimilation. This study shows that several imprints of assimilation of ultramafic wall rocks by carbonatite magmas are preserved in the resulting reaction rocks, allowing such a mechanism to be traced by using textural, mineralogical, and whole-rock geochemical evidence.</div></div>\",\"PeriodicalId\":55973,\"journal\":{\"name\":\"Chemie Der Erde-Geochemistry\",\"volume\":\"85 1\",\"pages\":\"Article 126218\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemie Der Erde-Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009281924001430\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009281924001430","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Wall rock assimilation in carbonatite magmas: Textural, mineral and whole-rock geochemical signatures in the Jacupiranga complex, Brazil
Carbonatite magmas, with their unique low SiO2 and high volatile compositions, can be extremely reactive with silicate country rocks, driving large chemical exchanges through processes such as magmatic assimilation and fenitization. In this study, we investigate the assimilation process between Jacupiranga carbonatite and clinopyroxenite xenoliths, focusing on the textural, mineralogical, and whole-rock geochemical features of the resulting reaction rocks. These data are compared with those from fluid-derived phlogopitites from the Alto Paranaíba Igneous Province, to evaluate the processes behind the reaction between carbonatite magma and ultramafic rocks. We report the first trace element data on phlogopites from Brazilian carbonatites and associated reaction rocks. Textural, mineralogical and whole-rock geochemical features can be interpreted as the effect of carbonatite magma assimilation of ultramafic rocks, as seen in the Jacupiranga complex. Thermal and chemical gradients promote unidirectional solidification, allowing the comb-layering formation. Xenolith boundaries act as orbicule cores, favoring nucleation and the crystallization of the reaction assemblage. Phlogopites from Jacupiranga reaction rocks exhibit a wide range of estimated temperatures (550 up to >1000 °C), although diffusive re-equilibration during magmatic and post-magmatic cooling cannot be ruled out. Reaction phlogopites are enriched in Ni and Co near the clinopyroxenite, with depletion of these elements towards the carbonatite front. Conversely, reaction phlogopites near the carbonatite are enriched in Ba, highlighting the effect of the carbonatite melt in the generation of the reaction rocks, which gradually decreases towards the clinopyroxenite contact. The reaction rocks have whole-rock major and trace element contents intermediate between those of the clinopyroxenites and the carbonatite front. Partition coefficients between calcite and apatite in the reaction rocks have flat, somewhat U-shaped patterns for REE, typical signatures of primary igneous calcite and consistent with an origin by magmatic assimilation. This study shows that several imprints of assimilation of ultramafic wall rocks by carbonatite magmas are preserved in the resulting reaction rocks, allowing such a mechanism to be traced by using textural, mineralogical, and whole-rock geochemical evidence.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry