复杂各向异性相互作用下基于最优控制的核自旋交叉极化

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Shovik Ray, Venkata SubbaRao Redrouthu, Asif Equbal and Sheetal Kumar Jain
{"title":"复杂各向异性相互作用下基于最优控制的核自旋交叉极化","authors":"Shovik Ray, Venkata SubbaRao Redrouthu, Asif Equbal and Sheetal Kumar Jain","doi":"10.1039/D5CP00096C","DOIUrl":null,"url":null,"abstract":"<p >Cross-polarization is an indispensable part of solid state nuclear magnetic resonance spectroscopy to enhance sensitivity and extract structural information. However, the presence of certain anisotropic interactions, including chemical shift anisotropy and quadrupolar coupling, makes the inter-nuclear spin correlation experiments challenging. This impedes characterization of numerous materials and pharmaceutical compounds containing isotopes, such as <small><sup>19</sup></small>F with large chemical shift anisotropy and <small><sup>6/7</sup></small>Li, <small><sup>23</sup></small>Na, <small><sup>27</sup></small>Al, <em>etc.</em>, with quadrupolar coupling. To address this problem, we introduce a new optimal control simulation-generated pulse sequence for Optimal Polarization Transfer In the presence of Anisotropic Nuclear Spin interactions (OPTIANS). Numerical simulations show high efficiency and robustness against experimental imperfections under a broad range of anisotropic interaction strengths for <small><sup>19</sup></small>F–<small><sup>7</sup></small>Li, <small><sup>19</sup></small>F–<small><sup>23</sup></small>Na, <small><sup>19</sup></small>F–<small><sup>27</sup></small>Al, and <small><sup>19</sup></small>F–<small><sup>13</sup></small>C polarization transfers. The polarization transfer curves show transient oscillations, which make the pulse sequence a quantitative method for dipolar coupling measurements. Experiments on a multi-metal fluoride system validate the predictions of the simulations by showing efficient PT in three spin pairs at varying experimental conditions. Remarkably, this method shows 50% better <small><sup>19</sup></small>F–<small><sup>7</sup></small>Li PT efficiency at 14.1 T compared to the ramped cross-polarization experiment. The underlying polarization transfer mechanism is analyzed using the Fourier transform of the polarization transfer curves revealing that this optimal control method utilizes the chemical shift anisotropy and quadrupolar coupling to facilitate robust and efficient cross-polarization.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 14","pages":" 7016-7027"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal control-based nuclear spin cross-polarization in the presence of complicating anisotropic interactions†\",\"authors\":\"Shovik Ray, Venkata SubbaRao Redrouthu, Asif Equbal and Sheetal Kumar Jain\",\"doi\":\"10.1039/D5CP00096C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Cross-polarization is an indispensable part of solid state nuclear magnetic resonance spectroscopy to enhance sensitivity and extract structural information. However, the presence of certain anisotropic interactions, including chemical shift anisotropy and quadrupolar coupling, makes the inter-nuclear spin correlation experiments challenging. This impedes characterization of numerous materials and pharmaceutical compounds containing isotopes, such as <small><sup>19</sup></small>F with large chemical shift anisotropy and <small><sup>6/7</sup></small>Li, <small><sup>23</sup></small>Na, <small><sup>27</sup></small>Al, <em>etc.</em>, with quadrupolar coupling. To address this problem, we introduce a new optimal control simulation-generated pulse sequence for Optimal Polarization Transfer In the presence of Anisotropic Nuclear Spin interactions (OPTIANS). Numerical simulations show high efficiency and robustness against experimental imperfections under a broad range of anisotropic interaction strengths for <small><sup>19</sup></small>F–<small><sup>7</sup></small>Li, <small><sup>19</sup></small>F–<small><sup>23</sup></small>Na, <small><sup>19</sup></small>F–<small><sup>27</sup></small>Al, and <small><sup>19</sup></small>F–<small><sup>13</sup></small>C polarization transfers. The polarization transfer curves show transient oscillations, which make the pulse sequence a quantitative method for dipolar coupling measurements. Experiments on a multi-metal fluoride system validate the predictions of the simulations by showing efficient PT in three spin pairs at varying experimental conditions. Remarkably, this method shows 50% better <small><sup>19</sup></small>F–<small><sup>7</sup></small>Li PT efficiency at 14.1 T compared to the ramped cross-polarization experiment. The underlying polarization transfer mechanism is analyzed using the Fourier transform of the polarization transfer curves revealing that this optimal control method utilizes the chemical shift anisotropy and quadrupolar coupling to facilitate robust and efficient cross-polarization.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 14\",\"pages\":\" 7016-7027\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00096c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00096c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

交叉极化是固态核磁共振波谱技术提高灵敏度和提取结构信息不可缺少的组成部分。然而,某些各向异性相互作用的存在,包括化学位移各向异性和四极耦合,使得核间自旋相关实验具有挑战性。这阻碍了许多含有同位素的材料和药物化合物的表征,例如具有大化学位移各向异性的19F和具有四极偶联的6/7Li, 23Na, 27Al等。为了解决这个问题,我们引入了一种新的最优控制模拟生成的脉冲序列,用于在各向异性核自旋相互作用(OPTIANS)存在下的最优极化传递。数值模拟结果表明,在较宽的各向异性相互作用强度范围内,19F-7Li、19F-23Na、19F-27Al和19F-13C极化转移具有较高的效率和鲁棒性。极化传递曲线呈现瞬态振荡,使脉冲序列成为测量偶极耦合的一种定量方法。在多金属氟化物系统上的实验验证了模拟的预测,在不同的实验条件下显示了三个自旋对的有效PT。值得注意的是,该方法在14.1 T下的19F-7Li PT效率比斜斜交叉极化实验提高了50%。利用极化传递曲线的傅里叶变换分析了极化传递机制,表明该优化控制方法利用化学位移各向异性和四极耦合来实现鲁棒和高效的交叉极化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal control-based nuclear spin cross-polarization in the presence of complicating anisotropic interactions†

Optimal control-based nuclear spin cross-polarization in the presence of complicating anisotropic interactions†

Optimal control-based nuclear spin cross-polarization in the presence of complicating anisotropic interactions†

Cross-polarization is an indispensable part of solid state nuclear magnetic resonance spectroscopy to enhance sensitivity and extract structural information. However, the presence of certain anisotropic interactions, including chemical shift anisotropy and quadrupolar coupling, makes the inter-nuclear spin correlation experiments challenging. This impedes characterization of numerous materials and pharmaceutical compounds containing isotopes, such as 19F with large chemical shift anisotropy and 6/7Li, 23Na, 27Al, etc., with quadrupolar coupling. To address this problem, we introduce a new optimal control simulation-generated pulse sequence for Optimal Polarization Transfer In the presence of Anisotropic Nuclear Spin interactions (OPTIANS). Numerical simulations show high efficiency and robustness against experimental imperfections under a broad range of anisotropic interaction strengths for 19F–7Li, 19F–23Na, 19F–27Al, and 19F–13C polarization transfers. The polarization transfer curves show transient oscillations, which make the pulse sequence a quantitative method for dipolar coupling measurements. Experiments on a multi-metal fluoride system validate the predictions of the simulations by showing efficient PT in three spin pairs at varying experimental conditions. Remarkably, this method shows 50% better 19F–7Li PT efficiency at 14.1 T compared to the ramped cross-polarization experiment. The underlying polarization transfer mechanism is analyzed using the Fourier transform of the polarization transfer curves revealing that this optimal control method utilizes the chemical shift anisotropy and quadrupolar coupling to facilitate robust and efficient cross-polarization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信