Somayeh Sadat Mehrnia, Zhino Safahi, Amin Mousavi, Fatemeh Panahandeh, Arezoo Farmani, Ren Yuan, Arman Rahmim, Mohammad R Salmanpour
{"title":"应用于肺癌患者 CT 扫描的二维深度学习分割网络的景观:系统回顾","authors":"Somayeh Sadat Mehrnia, Zhino Safahi, Amin Mousavi, Fatemeh Panahandeh, Arezoo Farmani, Ren Yuan, Arman Rahmim, Mohammad R Salmanpour","doi":"10.1007/s10278-025-01458-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The increasing rates of lung cancer emphasize the need for early detection through computed tomography (CT) scans, enhanced by deep learning (DL) to improve diagnosis, treatment, and patient survival. This review examines current and prospective applications of 2D- DL networks in lung cancer CT segmentation, summarizing research, highlighting essential concepts and gaps; Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic search of peer-reviewed studies from 01/2020 to 12/2024 on data-driven population segmentation using structured data was conducted across databases like Google Scholar, PubMed, Science Direct, IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for Computing Machinery) library. 124 studies met the inclusion criteria and were analyzed.</p><p><strong>Results: </strong>The LIDC-LIDR dataset was the most frequently used; The finding particularly relies on supervised learning with labeled data. The UNet model and its variants were the most frequently used models in medical image segmentation, achieving Dice Similarity Coefficients (DSC) of up to 0.9999. The reviewed studies primarily exhibit significant gaps in addressing class imbalances (67%), underuse of cross-validation (21%), and poor model stability evaluations (3%). Additionally, 88% failed to address the missing data, and generalizability concerns were only discussed in 34% of cases.</p><p><strong>Conclusions: </strong>The review emphasizes the importance of Convolutional Neural Networks, particularly UNet, in lung CT analysis and advocates for a combined 2D/3D modeling approach. It also highlights the need for larger, diverse datasets and the exploration of semi-supervised and unsupervised learning to enhance automated lung cancer diagnosis and early detection.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape of 2D Deep Learning Segmentation Networks Applied to CT Scan from Lung Cancer Patients: A Systematic Review.\",\"authors\":\"Somayeh Sadat Mehrnia, Zhino Safahi, Amin Mousavi, Fatemeh Panahandeh, Arezoo Farmani, Ren Yuan, Arman Rahmim, Mohammad R Salmanpour\",\"doi\":\"10.1007/s10278-025-01458-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The increasing rates of lung cancer emphasize the need for early detection through computed tomography (CT) scans, enhanced by deep learning (DL) to improve diagnosis, treatment, and patient survival. This review examines current and prospective applications of 2D- DL networks in lung cancer CT segmentation, summarizing research, highlighting essential concepts and gaps; Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic search of peer-reviewed studies from 01/2020 to 12/2024 on data-driven population segmentation using structured data was conducted across databases like Google Scholar, PubMed, Science Direct, IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for Computing Machinery) library. 124 studies met the inclusion criteria and were analyzed.</p><p><strong>Results: </strong>The LIDC-LIDR dataset was the most frequently used; The finding particularly relies on supervised learning with labeled data. The UNet model and its variants were the most frequently used models in medical image segmentation, achieving Dice Similarity Coefficients (DSC) of up to 0.9999. The reviewed studies primarily exhibit significant gaps in addressing class imbalances (67%), underuse of cross-validation (21%), and poor model stability evaluations (3%). Additionally, 88% failed to address the missing data, and generalizability concerns were only discussed in 34% of cases.</p><p><strong>Conclusions: </strong>The review emphasizes the importance of Convolutional Neural Networks, particularly UNet, in lung CT analysis and advocates for a combined 2D/3D modeling approach. It also highlights the need for larger, diverse datasets and the exploration of semi-supervised and unsupervised learning to enhance automated lung cancer diagnosis and early detection.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01458-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01458-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Landscape of 2D Deep Learning Segmentation Networks Applied to CT Scan from Lung Cancer Patients: A Systematic Review.
Background: The increasing rates of lung cancer emphasize the need for early detection through computed tomography (CT) scans, enhanced by deep learning (DL) to improve diagnosis, treatment, and patient survival. This review examines current and prospective applications of 2D- DL networks in lung cancer CT segmentation, summarizing research, highlighting essential concepts and gaps; Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic search of peer-reviewed studies from 01/2020 to 12/2024 on data-driven population segmentation using structured data was conducted across databases like Google Scholar, PubMed, Science Direct, IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for Computing Machinery) library. 124 studies met the inclusion criteria and were analyzed.
Results: The LIDC-LIDR dataset was the most frequently used; The finding particularly relies on supervised learning with labeled data. The UNet model and its variants were the most frequently used models in medical image segmentation, achieving Dice Similarity Coefficients (DSC) of up to 0.9999. The reviewed studies primarily exhibit significant gaps in addressing class imbalances (67%), underuse of cross-validation (21%), and poor model stability evaluations (3%). Additionally, 88% failed to address the missing data, and generalizability concerns were only discussed in 34% of cases.
Conclusions: The review emphasizes the importance of Convolutional Neural Networks, particularly UNet, in lung CT analysis and advocates for a combined 2D/3D modeling approach. It also highlights the need for larger, diverse datasets and the exploration of semi-supervised and unsupervised learning to enhance automated lung cancer diagnosis and early detection.