应用于肺癌患者 CT 扫描的二维深度学习分割网络的景观:系统回顾

Somayeh Sadat Mehrnia, Zhino Safahi, Amin Mousavi, Fatemeh Panahandeh, Arezoo Farmani, Ren Yuan, Arman Rahmim, Mohammad R Salmanpour
{"title":"应用于肺癌患者 CT 扫描的二维深度学习分割网络的景观:系统回顾","authors":"Somayeh Sadat Mehrnia, Zhino Safahi, Amin Mousavi, Fatemeh Panahandeh, Arezoo Farmani, Ren Yuan, Arman Rahmim, Mohammad R Salmanpour","doi":"10.1007/s10278-025-01458-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The increasing rates of lung cancer emphasize the need for early detection through computed tomography (CT) scans, enhanced by deep learning (DL) to improve diagnosis, treatment, and patient survival. This review examines current and prospective applications of 2D- DL networks in lung cancer CT segmentation, summarizing research, highlighting essential concepts and gaps; Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic search of peer-reviewed studies from 01/2020 to 12/2024 on data-driven population segmentation using structured data was conducted across databases like Google Scholar, PubMed, Science Direct, IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for Computing Machinery) library. 124 studies met the inclusion criteria and were analyzed.</p><p><strong>Results: </strong>The LIDC-LIDR dataset was the most frequently used; The finding particularly relies on supervised learning with labeled data. The UNet model and its variants were the most frequently used models in medical image segmentation, achieving Dice Similarity Coefficients (DSC) of up to 0.9999. The reviewed studies primarily exhibit significant gaps in addressing class imbalances (67%), underuse of cross-validation (21%), and poor model stability evaluations (3%). Additionally, 88% failed to address the missing data, and generalizability concerns were only discussed in 34% of cases.</p><p><strong>Conclusions: </strong>The review emphasizes the importance of Convolutional Neural Networks, particularly UNet, in lung CT analysis and advocates for a combined 2D/3D modeling approach. It also highlights the need for larger, diverse datasets and the exploration of semi-supervised and unsupervised learning to enhance automated lung cancer diagnosis and early detection.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landscape of 2D Deep Learning Segmentation Networks Applied to CT Scan from Lung Cancer Patients: A Systematic Review.\",\"authors\":\"Somayeh Sadat Mehrnia, Zhino Safahi, Amin Mousavi, Fatemeh Panahandeh, Arezoo Farmani, Ren Yuan, Arman Rahmim, Mohammad R Salmanpour\",\"doi\":\"10.1007/s10278-025-01458-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The increasing rates of lung cancer emphasize the need for early detection through computed tomography (CT) scans, enhanced by deep learning (DL) to improve diagnosis, treatment, and patient survival. This review examines current and prospective applications of 2D- DL networks in lung cancer CT segmentation, summarizing research, highlighting essential concepts and gaps; Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic search of peer-reviewed studies from 01/2020 to 12/2024 on data-driven population segmentation using structured data was conducted across databases like Google Scholar, PubMed, Science Direct, IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for Computing Machinery) library. 124 studies met the inclusion criteria and were analyzed.</p><p><strong>Results: </strong>The LIDC-LIDR dataset was the most frequently used; The finding particularly relies on supervised learning with labeled data. The UNet model and its variants were the most frequently used models in medical image segmentation, achieving Dice Similarity Coefficients (DSC) of up to 0.9999. The reviewed studies primarily exhibit significant gaps in addressing class imbalances (67%), underuse of cross-validation (21%), and poor model stability evaluations (3%). Additionally, 88% failed to address the missing data, and generalizability concerns were only discussed in 34% of cases.</p><p><strong>Conclusions: </strong>The review emphasizes the importance of Convolutional Neural Networks, particularly UNet, in lung CT analysis and advocates for a combined 2D/3D modeling approach. It also highlights the need for larger, diverse datasets and the exploration of semi-supervised and unsupervised learning to enhance automated lung cancer diagnosis and early detection.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01458-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01458-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Landscape of 2D Deep Learning Segmentation Networks Applied to CT Scan from Lung Cancer Patients: A Systematic Review.

Background: The increasing rates of lung cancer emphasize the need for early detection through computed tomography (CT) scans, enhanced by deep learning (DL) to improve diagnosis, treatment, and patient survival. This review examines current and prospective applications of 2D- DL networks in lung cancer CT segmentation, summarizing research, highlighting essential concepts and gaps; Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic search of peer-reviewed studies from 01/2020 to 12/2024 on data-driven population segmentation using structured data was conducted across databases like Google Scholar, PubMed, Science Direct, IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for Computing Machinery) library. 124 studies met the inclusion criteria and were analyzed.

Results: The LIDC-LIDR dataset was the most frequently used; The finding particularly relies on supervised learning with labeled data. The UNet model and its variants were the most frequently used models in medical image segmentation, achieving Dice Similarity Coefficients (DSC) of up to 0.9999. The reviewed studies primarily exhibit significant gaps in addressing class imbalances (67%), underuse of cross-validation (21%), and poor model stability evaluations (3%). Additionally, 88% failed to address the missing data, and generalizability concerns were only discussed in 34% of cases.

Conclusions: The review emphasizes the importance of Convolutional Neural Networks, particularly UNet, in lung CT analysis and advocates for a combined 2D/3D modeling approach. It also highlights the need for larger, diverse datasets and the exploration of semi-supervised and unsupervised learning to enhance automated lung cancer diagnosis and early detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信