随机通道消融用于多模态生物信号鲁棒手势分类。

Keshav Bimbraw, Jing Liu, Ye Wang, Toshiaki Koike-Akino
{"title":"随机通道消融用于多模态生物信号鲁棒手势分类。","authors":"Keshav Bimbraw, Jing Liu, Ye Wang, Toshiaki Koike-Akino","doi":"10.1109/EMBC53108.2024.10782851","DOIUrl":null,"url":null,"abstract":"<p><p>Biosignal-based hand gesture classification is an important component of effective human-machine interaction. For multimodal biosignal sensing, the modalities often face data loss due to missing channels in the data which can adversely affect the gesture classification performance. To make the classifiers robust to missing channels in the data, this paper proposes using Random Channel Ablation (RChA) during the training process. Ultrasound and force myography (FMG) data were acquired from the forearm for 12 hand gestures over 2 subjects. The resulting multimodal data had 16 total channels, 8 for each modality. The proposed method was applied to convolutional neural network architecture, and compared with baseline, imputation, and oracle methods. Using 5-fold cross-validation for the two subjects, on average, 12.2% and 24.5% improvement was observed for gesture classification with up to 4 and 8 missing channels respectively compared to the baseline. Notably, the proposed method is also robust to an increase in the number of missing channels compared to other methods. These results show the efficacy of using random channel ablation to improve classifier robustness for multimodal and multi-channel biosignal-based hand gesture classification.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Random Channel Ablation for Robust Hand Gesture Classification with Multimodal Biosignals.\",\"authors\":\"Keshav Bimbraw, Jing Liu, Ye Wang, Toshiaki Koike-Akino\",\"doi\":\"10.1109/EMBC53108.2024.10782851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biosignal-based hand gesture classification is an important component of effective human-machine interaction. For multimodal biosignal sensing, the modalities often face data loss due to missing channels in the data which can adversely affect the gesture classification performance. To make the classifiers robust to missing channels in the data, this paper proposes using Random Channel Ablation (RChA) during the training process. Ultrasound and force myography (FMG) data were acquired from the forearm for 12 hand gestures over 2 subjects. The resulting multimodal data had 16 total channels, 8 for each modality. The proposed method was applied to convolutional neural network architecture, and compared with baseline, imputation, and oracle methods. Using 5-fold cross-validation for the two subjects, on average, 12.2% and 24.5% improvement was observed for gesture classification with up to 4 and 8 missing channels respectively compared to the baseline. Notably, the proposed method is also robust to an increase in the number of missing channels compared to other methods. These results show the efficacy of using random channel ablation to improve classifier robustness for multimodal and multi-channel biosignal-based hand gesture classification.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10782851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于生物信号的手势分类是实现有效人机交互的重要组成部分。在多模态生物信号传感中,由于数据中缺少通道,模态经常面临数据丢失的问题,这会对手势分类性能产生不利影响。为了使分类器对数据中的缺失信道具有鲁棒性,本文提出在训练过程中使用随机信道消融(RChA)。对2名受试者进行12种手势的前臂超声和肌力图(FMG)数据采集。得到的多模态数据共有16个通道,每个通道8个。将该方法应用于卷积神经网络结构中,并与基线法、imputation法和oracle法进行了比较。对两名受试者进行5倍交叉验证,在缺失4个通道和8个通道的情况下,与基线相比,手势分类平均提高了12.2%和24.5%。值得注意的是,与其他方法相比,所提出的方法对丢失信道数量的增加也具有鲁棒性。这些结果表明,使用随机通道消融可以提高基于多模态和多通道生物信号的手势分类器的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Channel Ablation for Robust Hand Gesture Classification with Multimodal Biosignals.

Biosignal-based hand gesture classification is an important component of effective human-machine interaction. For multimodal biosignal sensing, the modalities often face data loss due to missing channels in the data which can adversely affect the gesture classification performance. To make the classifiers robust to missing channels in the data, this paper proposes using Random Channel Ablation (RChA) during the training process. Ultrasound and force myography (FMG) data were acquired from the forearm for 12 hand gestures over 2 subjects. The resulting multimodal data had 16 total channels, 8 for each modality. The proposed method was applied to convolutional neural network architecture, and compared with baseline, imputation, and oracle methods. Using 5-fold cross-validation for the two subjects, on average, 12.2% and 24.5% improvement was observed for gesture classification with up to 4 and 8 missing channels respectively compared to the baseline. Notably, the proposed method is also robust to an increase in the number of missing channels compared to other methods. These results show the efficacy of using random channel ablation to improve classifier robustness for multimodal and multi-channel biosignal-based hand gesture classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信