用心血管硬件模拟器再现中央-肱-桡动脉血压波的传播。

Jae-Hak Jeong, Bomi Lee, Junki Hong, Changhee Min, Adelle Ria Persad, Yong-Hwa Park
{"title":"用心血管硬件模拟器再现中央-肱-桡动脉血压波的传播。","authors":"Jae-Hak Jeong, Bomi Lee, Junki Hong, Changhee Min, Adelle Ria Persad, Yong-Hwa Park","doi":"10.1109/EMBC53108.2024.10782911","DOIUrl":null,"url":null,"abstract":"<p><p>This study reproduced changes according to the central-brachial-radial blood pressure wave propagation using a cardiovascular hardware simulator. Blood pressure is a key indicator of cardiovascular health, and its importance has recently emerged, and research into the correlation between the two is in progress. This requires a large amount of clinical data, but the amount and distribution are limited. The hardware simulator in this study mimics the structure and properties of the human cardiovascular system. This reproduces the pulse wave velocity and the generation of a blood pressure wave. The reproduced central-brachial-radial blood pressure waves are similar to those of humans in magnitude, waveform, and changes due to propagation. Blood pressure waves propagate from the central aorta to the radial artery, showing waveform changes due to systolic amplification and reduced overlap area. Reproducing these blood pressure waveforms can compensate for the lack of quantity and quality in clinical data. In the future, it can be expanded to a testbed for health sensors and research on the origin of bio-signals through the addition of upper arm and wrist phantoms.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproduction of central-brachial-radial arterial blood pressure wave propagation using a cardiovascular hardware simulator.\",\"authors\":\"Jae-Hak Jeong, Bomi Lee, Junki Hong, Changhee Min, Adelle Ria Persad, Yong-Hwa Park\",\"doi\":\"10.1109/EMBC53108.2024.10782911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study reproduced changes according to the central-brachial-radial blood pressure wave propagation using a cardiovascular hardware simulator. Blood pressure is a key indicator of cardiovascular health, and its importance has recently emerged, and research into the correlation between the two is in progress. This requires a large amount of clinical data, but the amount and distribution are limited. The hardware simulator in this study mimics the structure and properties of the human cardiovascular system. This reproduces the pulse wave velocity and the generation of a blood pressure wave. The reproduced central-brachial-radial blood pressure waves are similar to those of humans in magnitude, waveform, and changes due to propagation. Blood pressure waves propagate from the central aorta to the radial artery, showing waveform changes due to systolic amplification and reduced overlap area. Reproducing these blood pressure waveforms can compensate for the lack of quantity and quality in clinical data. In the future, it can be expanded to a testbed for health sensors and research on the origin of bio-signals through the addition of upper arm and wrist phantoms.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10782911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用心血管硬件模拟器再现了中央-肱-桡动脉血压波传播的变化。血压是心血管健康的一个关键指标,它的重要性最近才显现出来,对两者之间相关性的研究正在进行中。这需要大量的临床数据,但数量和分布有限。本研究的硬件模拟器模拟了人类心血管系统的结构和特性。这再现了脉搏波的速度和血压波的产生。再现的中央-肱-桡动脉血压波在大小、波形和传播变化方面与人类相似。血压波从中央主动脉传播到桡动脉,由于收缩放大和重叠面积减少,波形发生变化。再现这些血压波形可以弥补临床数据数量和质量的不足。未来,可以通过增加上臂和腕部幻影,将其扩展为健康传感器和生物信号起源研究的试验台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reproduction of central-brachial-radial arterial blood pressure wave propagation using a cardiovascular hardware simulator.

This study reproduced changes according to the central-brachial-radial blood pressure wave propagation using a cardiovascular hardware simulator. Blood pressure is a key indicator of cardiovascular health, and its importance has recently emerged, and research into the correlation between the two is in progress. This requires a large amount of clinical data, but the amount and distribution are limited. The hardware simulator in this study mimics the structure and properties of the human cardiovascular system. This reproduces the pulse wave velocity and the generation of a blood pressure wave. The reproduced central-brachial-radial blood pressure waves are similar to those of humans in magnitude, waveform, and changes due to propagation. Blood pressure waves propagate from the central aorta to the radial artery, showing waveform changes due to systolic amplification and reduced overlap area. Reproducing these blood pressure waveforms can compensate for the lack of quantity and quality in clinical data. In the future, it can be expanded to a testbed for health sensors and research on the origin of bio-signals through the addition of upper arm and wrist phantoms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信