利用原始脑电图数据评估基于深度学习的重度抑郁症诊断增强方法。

Charles A Ellis, Robyn L Miller, Vince D Calhoun
{"title":"利用原始脑电图数据评估基于深度学习的重度抑郁症诊断增强方法。","authors":"Charles A Ellis, Robyn L Miller, Vince D Calhoun","doi":"10.1109/EMBC53108.2024.10782103","DOIUrl":null,"url":null,"abstract":"<p><p>While deep learning methods are increasingly applied in research contexts for neuropsychiatric disorder diagnosis, small dataset size limits their potential for clinical translation. Data augmentation (DA) could address this limitation, but the utility of EEG DA methods remains relatively underexplored in neuropsychiatric disorder diagnosis. In this study, we train a model for major depressive disorder diagnosis. We then evaluate the utility of 6 EEG DA approaches. Importantly, to remove the bias that could be introduced by comparing performance for models trained on larger augmented training sets to models trained on smaller baseline sets, we also introduce a new baseline trained on duplicate training data. We lastly examine the effects of the DA approaches upon representations learned by the model with a pair of explainability analyses. We find that while most approaches boost model performance, they do not improve model performance beyond that of simply using a duplicate training set without DA. The exception to this is channel dropout augmentation, which does improve model performance. These findings suggest the importance of comparing EEG DA methods to a baseline with a duplicate training set of equal size to the augmented training set. We also found that some DA methods increased model robustness to frequency (Fourier transform surrogates) and channel (channel dropout) perturbation. While our findings on EEG DA efficacy are restricted to our dataset and model, we hope that future studies on deep learning for small EEG datasets and on new EEG DA methods will find our findings helpful.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data.\",\"authors\":\"Charles A Ellis, Robyn L Miller, Vince D Calhoun\",\"doi\":\"10.1109/EMBC53108.2024.10782103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While deep learning methods are increasingly applied in research contexts for neuropsychiatric disorder diagnosis, small dataset size limits their potential for clinical translation. Data augmentation (DA) could address this limitation, but the utility of EEG DA methods remains relatively underexplored in neuropsychiatric disorder diagnosis. In this study, we train a model for major depressive disorder diagnosis. We then evaluate the utility of 6 EEG DA approaches. Importantly, to remove the bias that could be introduced by comparing performance for models trained on larger augmented training sets to models trained on smaller baseline sets, we also introduce a new baseline trained on duplicate training data. We lastly examine the effects of the DA approaches upon representations learned by the model with a pair of explainability analyses. We find that while most approaches boost model performance, they do not improve model performance beyond that of simply using a duplicate training set without DA. The exception to this is channel dropout augmentation, which does improve model performance. These findings suggest the importance of comparing EEG DA methods to a baseline with a duplicate training set of equal size to the augmented training set. We also found that some DA methods increased model robustness to frequency (Fourier transform surrogates) and channel (channel dropout) perturbation. While our findings on EEG DA efficacy are restricted to our dataset and model, we hope that future studies on deep learning for small EEG datasets and on new EEG DA methods will find our findings helpful.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10782103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然深度学习方法越来越多地应用于神经精神疾病诊断的研究背景,但较小的数据集规模限制了它们在临床转化中的潜力。数据增强(DA)可以解决这一限制,但EEG DA方法在神经精神疾病诊断中的应用仍然相对不足。在这项研究中,我们训练了一个重度抑郁症诊断模型。然后我们评估了6种EEG DA方法的效用。重要的是,为了消除可能通过比较在较大的增强训练集上训练的模型与在较小的基线集上训练的模型的性能而引入的偏差,我们还引入了在重复训练数据上训练的新基线。最后,我们用一对可解释性分析来检验数据处理方法对模型学习到的表征的影响。我们发现,虽然大多数方法提高了模型性能,但除了简单地使用没有DA的重复训练集之外,它们并没有提高模型性能。唯一的例外是信道丢弃增强,它确实提高了模型性能。这些发现表明,将EEG DA方法与具有与增强训练集大小相等的重复训练集的基线进行比较的重要性。我们还发现一些数据分析方法增加了模型对频率(傅立叶变换替代)和信道(信道丢失)扰动的鲁棒性。虽然我们的研究结果仅限于我们的数据集和模型,但我们希望未来对小型EEG数据集和新的EEG DA方法的深度学习研究将发现我们的发现有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating Augmentation Approaches for Deep Learning-based Major Depressive Disorder Diagnosis with Raw Electroencephalogram Data.

While deep learning methods are increasingly applied in research contexts for neuropsychiatric disorder diagnosis, small dataset size limits their potential for clinical translation. Data augmentation (DA) could address this limitation, but the utility of EEG DA methods remains relatively underexplored in neuropsychiatric disorder diagnosis. In this study, we train a model for major depressive disorder diagnosis. We then evaluate the utility of 6 EEG DA approaches. Importantly, to remove the bias that could be introduced by comparing performance for models trained on larger augmented training sets to models trained on smaller baseline sets, we also introduce a new baseline trained on duplicate training data. We lastly examine the effects of the DA approaches upon representations learned by the model with a pair of explainability analyses. We find that while most approaches boost model performance, they do not improve model performance beyond that of simply using a duplicate training set without DA. The exception to this is channel dropout augmentation, which does improve model performance. These findings suggest the importance of comparing EEG DA methods to a baseline with a duplicate training set of equal size to the augmented training set. We also found that some DA methods increased model robustness to frequency (Fourier transform surrogates) and channel (channel dropout) perturbation. While our findings on EEG DA efficacy are restricted to our dataset and model, we hope that future studies on deep learning for small EEG datasets and on new EEG DA methods will find our findings helpful.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信