长时间冷液丸给药期间连续心率监测的面部远程光容积脉搏波描记术。

Mahdi Momeni, Sophie Wuthe, Michaela Bitten Molmer, Emilie Lobner Svendsen, Mikkel Brabrand, Peter Biesenbach, Daniel Teichmann
{"title":"长时间冷液丸给药期间连续心率监测的面部远程光容积脉搏波描记术。","authors":"Mahdi Momeni, Sophie Wuthe, Michaela Bitten Molmer, Emilie Lobner Svendsen, Mikkel Brabrand, Peter Biesenbach, Daniel Teichmann","doi":"10.1109/EMBC53108.2024.10781709","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates non-contact heart rate (HR) monitoring through camera-based remote PPG during intravenous fluid bolus (FB) therapy. The experiment, at Odense University Hospital, Denmark, involved 4 volunteers and over 350 minutes of filming. We implemented a MATLAB-based HR extraction tool chain. The proposed method includes a two-stage process for dynamically determining regions of interest (ROIs), incorporating deep learning for facial landmarks detection and a subsequential consideration of subjects' facial dimensions. HR estimation uses chrominance-based (CHROM) and plane-orthogonal-to-skin (POS) PPG signal extraction methods, chosen for robustness against motion artifacts. Deviating from usual advice for other methods, omitting preprocessing minimizes signal processing still yielding a low error rate. The system achieved a mean error of fewer than 2 beats per minute (bpm), underscoring iPPG's alignment with ground truth. The results exemplify the feasibility of remote PPG monitoring in critical care and emergency settings.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial Remote Photoplethysmography for Continuous Heart Rate Monitoring during Prolonged Cold Liquid Bolus Administration.\",\"authors\":\"Mahdi Momeni, Sophie Wuthe, Michaela Bitten Molmer, Emilie Lobner Svendsen, Mikkel Brabrand, Peter Biesenbach, Daniel Teichmann\",\"doi\":\"10.1109/EMBC53108.2024.10781709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates non-contact heart rate (HR) monitoring through camera-based remote PPG during intravenous fluid bolus (FB) therapy. The experiment, at Odense University Hospital, Denmark, involved 4 volunteers and over 350 minutes of filming. We implemented a MATLAB-based HR extraction tool chain. The proposed method includes a two-stage process for dynamically determining regions of interest (ROIs), incorporating deep learning for facial landmarks detection and a subsequential consideration of subjects' facial dimensions. HR estimation uses chrominance-based (CHROM) and plane-orthogonal-to-skin (POS) PPG signal extraction methods, chosen for robustness against motion artifacts. Deviating from usual advice for other methods, omitting preprocessing minimizes signal processing still yielding a low error rate. The system achieved a mean error of fewer than 2 beats per minute (bpm), underscoring iPPG's alignment with ground truth. The results exemplify the feasibility of remote PPG monitoring in critical care and emergency settings.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10781709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10781709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在静脉输液(FB)治疗期间通过基于摄像机的远程PPG进行非接触式心率(HR)监测。这项实验在丹麦欧登塞大学医院进行,有4名志愿者参与,拍摄了350多分钟。我们实现了一个基于matlab的人力资源提取工具链。所提出的方法包括一个动态确定感兴趣区域(roi)的两阶段过程,结合深度学习进行面部地标检测,并随后考虑受试者的面部尺寸。HR估计使用基于色度(CHROM)和平面正交皮肤(POS) PPG信号提取方法,选择对运动伪像的鲁棒性。与通常对其他方法的建议不同,省略预处理可以最大限度地减少信号处理,但仍然产生较低的错误率。该系统的平均误差低于每分钟2次(bpm),强调了iPPG与地面真实情况的一致性。结果说明了在重症监护和急诊环境中远程监测PPG的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial Remote Photoplethysmography for Continuous Heart Rate Monitoring during Prolonged Cold Liquid Bolus Administration.

This study investigates non-contact heart rate (HR) monitoring through camera-based remote PPG during intravenous fluid bolus (FB) therapy. The experiment, at Odense University Hospital, Denmark, involved 4 volunteers and over 350 minutes of filming. We implemented a MATLAB-based HR extraction tool chain. The proposed method includes a two-stage process for dynamically determining regions of interest (ROIs), incorporating deep learning for facial landmarks detection and a subsequential consideration of subjects' facial dimensions. HR estimation uses chrominance-based (CHROM) and plane-orthogonal-to-skin (POS) PPG signal extraction methods, chosen for robustness against motion artifacts. Deviating from usual advice for other methods, omitting preprocessing minimizes signal processing still yielding a low error rate. The system achieved a mean error of fewer than 2 beats per minute (bpm), underscoring iPPG's alignment with ground truth. The results exemplify the feasibility of remote PPG monitoring in critical care and emergency settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信