使用端到端机器学习方法估算中风后原始运动轨迹数据的上肢函数。

Wanyi Qing, Changjie Pan, Jianing Zhang, Chun-Yan Chau, Chun-Hin Mui, Xiaoling Hu
{"title":"使用端到端机器学习方法估算中风后原始运动轨迹数据的上肢函数。","authors":"Wanyi Qing, Changjie Pan, Jianing Zhang, Chun-Yan Chau, Chun-Hin Mui, Xiaoling Hu","doi":"10.1109/EMBC53108.2024.10781580","DOIUrl":null,"url":null,"abstract":"<p><p>Although there are some studies on the automatic evaluation of impairment levels after stroke using machine learning (ML) models, few have delved into the predictive capabilities of raw motion data. In this study, we captured kinematic trajectories of the trunk and affected upper limb from 21 patients with chronic stroke when performing three reaching tasks. Employing ML models, we integrated the recorded trajectories to predict scores of the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) of stroke patients. A transformer-based model achieved better metrics than Residual Neural Network (ResNet) and support vector regression (SVR). The trajectory successfully predicted FMA-UE scores, with the forward task (R<sup>2</sup>=0.905±0.028) outperforming the vertical task (R<sup>2</sup>=0.875±0.019) and horizontal task (R<sup>2</sup>=0.868±0.031). This pilot study demonstrated the capability of original trajectory data in tracking personal motor function after stroke and extended possibility of application in telerehabilitation.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Upper-extremity Function with Raw Kinematic Trajectory Data after Stroke using End-to-end Machine Learning Approach.\",\"authors\":\"Wanyi Qing, Changjie Pan, Jianing Zhang, Chun-Yan Chau, Chun-Hin Mui, Xiaoling Hu\",\"doi\":\"10.1109/EMBC53108.2024.10781580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although there are some studies on the automatic evaluation of impairment levels after stroke using machine learning (ML) models, few have delved into the predictive capabilities of raw motion data. In this study, we captured kinematic trajectories of the trunk and affected upper limb from 21 patients with chronic stroke when performing three reaching tasks. Employing ML models, we integrated the recorded trajectories to predict scores of the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) of stroke patients. A transformer-based model achieved better metrics than Residual Neural Network (ResNet) and support vector regression (SVR). The trajectory successfully predicted FMA-UE scores, with the forward task (R<sup>2</sup>=0.905±0.028) outperforming the vertical task (R<sup>2</sup>=0.875±0.019) and horizontal task (R<sup>2</sup>=0.868±0.031). This pilot study demonstrated the capability of original trajectory data in tracking personal motor function after stroke and extended possibility of application in telerehabilitation.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10781580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10781580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然有一些研究使用机器学习(ML)模型对中风后损伤水平的自动评估,但很少有人深入研究原始运动数据的预测能力。在这项研究中,我们捕捉了21名慢性中风患者在执行三个伸手任务时躯干和上肢的运动轨迹。采用ML模型,我们整合记录的轨迹来预测脑卒中患者的Fugl-Meyer上肢评估(FMA-UE)得分。基于变压器的模型比残差神经网络(ResNet)和支持向量回归(SVR)获得了更好的度量。轨迹预测FMA-UE得分较成功,正向任务(R2=0.905±0.028)优于垂直任务(R2=0.875±0.019)和水平任务(R2=0.868±0.031)。这项初步研究证明了原始轨迹数据在中风后跟踪个人运动功能的能力,并扩展了在远程康复中应用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating Upper-extremity Function with Raw Kinematic Trajectory Data after Stroke using End-to-end Machine Learning Approach.

Although there are some studies on the automatic evaluation of impairment levels after stroke using machine learning (ML) models, few have delved into the predictive capabilities of raw motion data. In this study, we captured kinematic trajectories of the trunk and affected upper limb from 21 patients with chronic stroke when performing three reaching tasks. Employing ML models, we integrated the recorded trajectories to predict scores of the Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) of stroke patients. A transformer-based model achieved better metrics than Residual Neural Network (ResNet) and support vector regression (SVR). The trajectory successfully predicted FMA-UE scores, with the forward task (R2=0.905±0.028) outperforming the vertical task (R2=0.875±0.019) and horizontal task (R2=0.868±0.031). This pilot study demonstrated the capability of original trajectory data in tracking personal motor function after stroke and extended possibility of application in telerehabilitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信