基于分层网络和患者就诊记录的药物推荐。

Sawrawit Chairat, Apichat Sae-Ang, Kerdkiat Suvirat, Thammasin Ingviya, Sitthichok Chaichulee
{"title":"基于分层网络和患者就诊记录的药物推荐。","authors":"Sawrawit Chairat, Apichat Sae-Ang, Kerdkiat Suvirat, Thammasin Ingviya, Sitthichok Chaichulee","doi":"10.1109/EMBC53108.2024.10781496","DOIUrl":null,"url":null,"abstract":"<p><p>Prescribing medications is an essential part of patient care and requires precision and personalization in selection. Our study introduces a hierarchical medication recommendation system that aims to improve the prescribing process. We use FastText to embed medical contexts and employ a hierarchical attention-based model to manage the hierarchical structure of medication codes. The system takes input data from the current visit and the three previous visits to make recommendations. We trained and evaluated our model on 99,417 anonymized primary care outpatient visits. Our model achieved a mean average precision (mean AP) of 0.8724, 0.7419, 0.6805, and 0.6184 at the first, second, third, and fourth levels of the ATC system, respectively. We demonstrate that incorporating patient visit histories can improve predictions. Our results provide a solution to improve medication prescribing and suggest possible extensions for more comprehensive recommendations.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Medication Recommendation with Hierarchical Network and Patient Visit Histories.\",\"authors\":\"Sawrawit Chairat, Apichat Sae-Ang, Kerdkiat Suvirat, Thammasin Ingviya, Sitthichok Chaichulee\",\"doi\":\"10.1109/EMBC53108.2024.10781496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prescribing medications is an essential part of patient care and requires precision and personalization in selection. Our study introduces a hierarchical medication recommendation system that aims to improve the prescribing process. We use FastText to embed medical contexts and employ a hierarchical attention-based model to manage the hierarchical structure of medication codes. The system takes input data from the current visit and the three previous visits to make recommendations. We trained and evaluated our model on 99,417 anonymized primary care outpatient visits. Our model achieved a mean average precision (mean AP) of 0.8724, 0.7419, 0.6805, and 0.6184 at the first, second, third, and fourth levels of the ATC system, respectively. We demonstrate that incorporating patient visit histories can improve predictions. Our results provide a solution to improve medication prescribing and suggest possible extensions for more comprehensive recommendations.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10781496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10781496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

处方药物是病人护理的重要组成部分,需要精确和个性化的选择。我们的研究引入了一个分层的药物推荐系统,旨在改善处方过程。我们使用FastText来嵌入医学上下文,并采用基于关注的分层模型来管理药物代码的分层结构。系统从当前访问和前三次访问中获取输入数据以提出建议。我们对99,417名匿名初级保健门诊病人进行了训练和评估。我们的模型在ATC系统的第一、第二、第三和第四层分别获得了0.8724、0.7419、0.6805和0.6184的平均精度(mean AP)。我们证明纳入患者就诊历史可以提高预测。我们的结果为改善药物处方提供了解决方案,并提出了可能的扩展,以提供更全面的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Medication Recommendation with Hierarchical Network and Patient Visit Histories.

Prescribing medications is an essential part of patient care and requires precision and personalization in selection. Our study introduces a hierarchical medication recommendation system that aims to improve the prescribing process. We use FastText to embed medical contexts and employ a hierarchical attention-based model to manage the hierarchical structure of medication codes. The system takes input data from the current visit and the three previous visits to make recommendations. We trained and evaluated our model on 99,417 anonymized primary care outpatient visits. Our model achieved a mean average precision (mean AP) of 0.8724, 0.7419, 0.6805, and 0.6184 at the first, second, third, and fourth levels of the ATC system, respectively. We demonstrate that incorporating patient visit histories can improve predictions. Our results provide a solution to improve medication prescribing and suggest possible extensions for more comprehensive recommendations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信