眼底照片中多疾病检测的领域概化。

Sarah Matta, Mathieu Lamard, Laurent Borderie, Alexandre Le Guilcher, Pascale Massin, Jean-Bernard Rottier, Beatrice Cochener, Gwenole Quellec
{"title":"眼底照片中多疾病检测的领域概化。","authors":"Sarah Matta, Mathieu Lamard, Laurent Borderie, Alexandre Le Guilcher, Pascale Massin, Jean-Bernard Rottier, Beatrice Cochener, Gwenole Quellec","doi":"10.1109/EMBC53108.2024.10781556","DOIUrl":null,"url":null,"abstract":"<p><p>Domain generalization (DG) is a paradigm ensuring machine learning algorithms predict well on unseen domains. Recent computer vision research in DG highlighted how inconsistencies in datasets, architectures, and model criteria challenge fair comparisons. In the medical domain, the application of DG algorithms assumes an even more challenging task as medical data often exhibit significant variability due to diverse imaging modalities, patient demographics, and disease characteristics. In light of this, DG algorithms need to generalize effectively across different medical settings and patient populations for ensuring robustness and fairness in healthcare applications. In this paper, we evaluate various DG algorithms and strategies for the application of multi-disease detection in fundus photographs. We conducted extensive experiments using four heterogeneous datasets: OPHDIAT (France, diabetic population), OphtaMaine (France, general population), RIADD (India, general population) and ODIR (China, general population). The following diseases were targeted: diabetes, glaucoma, cataract, age-related macular degeneration, hypertension, myopia and other diseases/abnormalities.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain Generalization for Multi-disease Detection in Fundus Photographs.\",\"authors\":\"Sarah Matta, Mathieu Lamard, Laurent Borderie, Alexandre Le Guilcher, Pascale Massin, Jean-Bernard Rottier, Beatrice Cochener, Gwenole Quellec\",\"doi\":\"10.1109/EMBC53108.2024.10781556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Domain generalization (DG) is a paradigm ensuring machine learning algorithms predict well on unseen domains. Recent computer vision research in DG highlighted how inconsistencies in datasets, architectures, and model criteria challenge fair comparisons. In the medical domain, the application of DG algorithms assumes an even more challenging task as medical data often exhibit significant variability due to diverse imaging modalities, patient demographics, and disease characteristics. In light of this, DG algorithms need to generalize effectively across different medical settings and patient populations for ensuring robustness and fairness in healthcare applications. In this paper, we evaluate various DG algorithms and strategies for the application of multi-disease detection in fundus photographs. We conducted extensive experiments using four heterogeneous datasets: OPHDIAT (France, diabetic population), OphtaMaine (France, general population), RIADD (India, general population) and ODIR (China, general population). The following diseases were targeted: diabetes, glaucoma, cataract, age-related macular degeneration, hypertension, myopia and other diseases/abnormalities.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10781556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10781556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

领域泛化(DG)是一种确保机器学习算法在未知领域进行良好预测的范式。DG最近的计算机视觉研究强调了数据集、架构和模型标准的不一致性如何挑战公平比较。在医疗领域,DG算法的应用承担了一项更具挑战性的任务,因为由于不同的成像方式、患者人口统计学和疾病特征,医疗数据往往表现出显著的可变性。鉴于此,DG算法需要在不同的医疗环境和患者群体中有效地推广,以确保医疗保健应用程序的鲁棒性和公平性。在本文中,我们评估了各种DG算法和策略在眼底照片多疾病检测中的应用。我们使用四个异构数据集进行了广泛的实验:OPHDIAT(法国,糖尿病人群)、OphtaMaine(法国,普通人群)、RIADD(印度,普通人群)和ODIR(中国,普通人群)。针对以下疾病:糖尿病、青光眼、白内障、老年性黄斑变性、高血压、近视和其他疾病/异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain Generalization for Multi-disease Detection in Fundus Photographs.

Domain generalization (DG) is a paradigm ensuring machine learning algorithms predict well on unseen domains. Recent computer vision research in DG highlighted how inconsistencies in datasets, architectures, and model criteria challenge fair comparisons. In the medical domain, the application of DG algorithms assumes an even more challenging task as medical data often exhibit significant variability due to diverse imaging modalities, patient demographics, and disease characteristics. In light of this, DG algorithms need to generalize effectively across different medical settings and patient populations for ensuring robustness and fairness in healthcare applications. In this paper, we evaluate various DG algorithms and strategies for the application of multi-disease detection in fundus photographs. We conducted extensive experiments using four heterogeneous datasets: OPHDIAT (France, diabetic population), OphtaMaine (France, general population), RIADD (India, general population) and ODIR (China, general population). The following diseases were targeted: diabetes, glaucoma, cataract, age-related macular degeneration, hypertension, myopia and other diseases/abnormalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信