基于深度学习的PPG频谱动脉硬度估计:一种无创心血管诊断的新方法。

Kiana Pilevar Abrisham, Khalil Alipour, Bahram Tarvirdizadeh, Mohammad Ghamari
{"title":"基于深度学习的PPG频谱动脉硬度估计:一种无创心血管诊断的新方法。","authors":"Kiana Pilevar Abrisham, Khalil Alipour, Bahram Tarvirdizadeh, Mohammad Ghamari","doi":"10.1109/EMBC53108.2024.10782553","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs), a leading cause of global mortality, are intricately linked to arterial stiffness, a key factor in cardiovascular health. Non-invasive assessment of arterial stiffness, particularly through Carotid-to-femoral Pulse Wave Velocity (cf-PWV) - the gold standard in this field - is vital for early detection and management of CVDs. This study introduces a novel approach, utilizing photoplethysmogram (PPG) signal spectrograms as inputs for deep learning models to estimate cf-PWV, a significant advancement over traditional methods. Employing a modified ResNet-18 architecture, we analyze PPG signals from digital, radial, and brachial arteries of a simulated dataset of 4374 healthy adults. Our methodology's innovation lies in its direct use of finely tuned spectrogram images, bypassing the complex feature extraction processes. This approach achieved R<sup>2</sup> (correlation coefficient) values of up to 0.9902 for the digital artery, 0.9898 for the radial artery, and 0.9825 for the brachial artery, coupled with significantly lower Mean Absolute Percentage Errors (MAPE) of approximately 1.61% for the digital, 1.87% for the radial, and 2.08% for the brachial artery. These findings highlight the efficacy of PPG spectrograms, especially from the digital artery, in providing an accurate, user-friendly, and non-invasive method for cf-PWV estimation, thereby enhancing the capabilities of non-invasive cardiovascular diagnostics.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Estimation of Arterial Stiffness from PPG Spectrograms: A Novel Approach for Non-Invasive Cardiovascular Diagnostics.\",\"authors\":\"Kiana Pilevar Abrisham, Khalil Alipour, Bahram Tarvirdizadeh, Mohammad Ghamari\",\"doi\":\"10.1109/EMBC53108.2024.10782553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiovascular diseases (CVDs), a leading cause of global mortality, are intricately linked to arterial stiffness, a key factor in cardiovascular health. Non-invasive assessment of arterial stiffness, particularly through Carotid-to-femoral Pulse Wave Velocity (cf-PWV) - the gold standard in this field - is vital for early detection and management of CVDs. This study introduces a novel approach, utilizing photoplethysmogram (PPG) signal spectrograms as inputs for deep learning models to estimate cf-PWV, a significant advancement over traditional methods. Employing a modified ResNet-18 architecture, we analyze PPG signals from digital, radial, and brachial arteries of a simulated dataset of 4374 healthy adults. Our methodology's innovation lies in its direct use of finely tuned spectrogram images, bypassing the complex feature extraction processes. This approach achieved R<sup>2</sup> (correlation coefficient) values of up to 0.9902 for the digital artery, 0.9898 for the radial artery, and 0.9825 for the brachial artery, coupled with significantly lower Mean Absolute Percentage Errors (MAPE) of approximately 1.61% for the digital, 1.87% for the radial, and 2.08% for the brachial artery. These findings highlight the efficacy of PPG spectrograms, especially from the digital artery, in providing an accurate, user-friendly, and non-invasive method for cf-PWV estimation, thereby enhancing the capabilities of non-invasive cardiovascular diagnostics.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10782553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病(cvd)是全球死亡的主要原因之一,它与动脉僵硬(心血管健康的一个关键因素)有着错综复杂的联系。动脉硬度的无创评估,特别是通过颈动脉到股动脉的脉搏波速度(cf-PWV)——该领域的金标准——对心血管疾病的早期发现和管理至关重要。本研究引入了一种新的方法,利用光容积脉搏图(PPG)信号谱图作为深度学习模型的输入来估计cf-PWV,这是传统方法的重大进步。采用改进的ResNet-18架构,我们分析了4374名健康成年人的模拟数据集的数字动脉、桡动脉和肱动脉的PPG信号。我们的方法的创新之处在于它直接使用精细调谐的光谱图图像,绕过复杂的特征提取过程。该方法获得了R2(相关系数)值高达0.9902的指动脉,0.9898的桡动脉,0.9825的肱动脉,再配以显著较低的平均绝对百分比误差(MAPE)约1.61%的数字,1.87%的桡动脉,2.08%的肱动脉。这些发现强调了PPG谱图的有效性,特别是来自数字动脉的PPG谱图,为cf-PWV估计提供了一种准确、用户友好且无创的方法,从而提高了无创心血管诊断的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Estimation of Arterial Stiffness from PPG Spectrograms: A Novel Approach for Non-Invasive Cardiovascular Diagnostics.

Cardiovascular diseases (CVDs), a leading cause of global mortality, are intricately linked to arterial stiffness, a key factor in cardiovascular health. Non-invasive assessment of arterial stiffness, particularly through Carotid-to-femoral Pulse Wave Velocity (cf-PWV) - the gold standard in this field - is vital for early detection and management of CVDs. This study introduces a novel approach, utilizing photoplethysmogram (PPG) signal spectrograms as inputs for deep learning models to estimate cf-PWV, a significant advancement over traditional methods. Employing a modified ResNet-18 architecture, we analyze PPG signals from digital, radial, and brachial arteries of a simulated dataset of 4374 healthy adults. Our methodology's innovation lies in its direct use of finely tuned spectrogram images, bypassing the complex feature extraction processes. This approach achieved R2 (correlation coefficient) values of up to 0.9902 for the digital artery, 0.9898 for the radial artery, and 0.9825 for the brachial artery, coupled with significantly lower Mean Absolute Percentage Errors (MAPE) of approximately 1.61% for the digital, 1.87% for the radial, and 2.08% for the brachial artery. These findings highlight the efficacy of PPG spectrograms, especially from the digital artery, in providing an accurate, user-friendly, and non-invasive method for cf-PWV estimation, thereby enhancing the capabilities of non-invasive cardiovascular diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信