基于雷达提取心脏信号的深度学习开放集人识别。

Zelin Xing, Mondher Bouazizi, Tomoaki Ohtsuki
{"title":"基于雷达提取心脏信号的深度学习开放集人识别。","authors":"Zelin Xing, Mondher Bouazizi, Tomoaki Ohtsuki","doi":"10.1109/EMBC53108.2024.10782527","DOIUrl":null,"url":null,"abstract":"<p><p>Person identification based on radar-extracted vital signs has become increasingly popular due to its non-contact measurement capabilities. This paper introduces a novel deep learning-based person identification algorithm leveraging radar- extracted vital signs. While current studies mainly focus on closeset conditions with consistent training and testing categories, real-world scenarios often involve open-set circumstances, in which there are more data categories in the testing data. The algorithm involves extracting heart pulse signals from Doppler radar echoes, training two Convolutional Neural Network (CNN)-based models using transfer learning, and utilizing a distribution model for calibration. By combining the models' outputs through a strategic decision-making process, we achieve superior person identification results. Experimental results on a public radar vital signs dataset demonstrate an identification accuracy of 99.61% in close-set conditions and 94.35% in openset conditions, surpassing existing approaches.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-based Open-set Person Identification using Radar Extracted Cardiac Signals.\",\"authors\":\"Zelin Xing, Mondher Bouazizi, Tomoaki Ohtsuki\",\"doi\":\"10.1109/EMBC53108.2024.10782527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Person identification based on radar-extracted vital signs has become increasingly popular due to its non-contact measurement capabilities. This paper introduces a novel deep learning-based person identification algorithm leveraging radar- extracted vital signs. While current studies mainly focus on closeset conditions with consistent training and testing categories, real-world scenarios often involve open-set circumstances, in which there are more data categories in the testing data. The algorithm involves extracting heart pulse signals from Doppler radar echoes, training two Convolutional Neural Network (CNN)-based models using transfer learning, and utilizing a distribution model for calibration. By combining the models' outputs through a strategic decision-making process, we achieve superior person identification results. Experimental results on a public radar vital signs dataset demonstrate an identification accuracy of 99.61% in close-set conditions and 94.35% in openset conditions, surpassing existing approaches.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10782527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于雷达提取生命体征的身份识别由于其非接触式测量能力而越来越受欢迎。本文介绍了一种利用雷达提取生命体征的基于深度学习的人物识别算法。虽然目前的研究主要集中在具有一致的训练和测试类别的封闭条件下,但现实场景通常涉及开放集环境,其中测试数据中有更多的数据类别。该算法包括从多普勒雷达回波中提取心脏脉冲信号,使用迁移学习训练两个基于卷积神经网络(CNN)的模型,并利用分布模型进行校准。通过战略决策过程结合模型的输出,我们获得了卓越的人员识别结果。在公共雷达生命体征数据集上的实验结果表明,该方法在封闭条件下的识别准确率为99.61%,在开放条件下的识别准确率为94.35%,超过了现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-based Open-set Person Identification using Radar Extracted Cardiac Signals.

Person identification based on radar-extracted vital signs has become increasingly popular due to its non-contact measurement capabilities. This paper introduces a novel deep learning-based person identification algorithm leveraging radar- extracted vital signs. While current studies mainly focus on closeset conditions with consistent training and testing categories, real-world scenarios often involve open-set circumstances, in which there are more data categories in the testing data. The algorithm involves extracting heart pulse signals from Doppler radar echoes, training two Convolutional Neural Network (CNN)-based models using transfer learning, and utilizing a distribution model for calibration. By combining the models' outputs through a strategic decision-making process, we achieve superior person identification results. Experimental results on a public radar vital signs dataset demonstrate an identification accuracy of 99.61% in close-set conditions and 94.35% in openset conditions, surpassing existing approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信