高斯的AGM, Ramanujan的相应理论,和自伴随算子的谱界。

IF 0.8 4区 数学 Q2 MATHEMATICS
Monatshefte fur Mathematik Pub Date : 2025-01-01 Epub Date: 2025-01-22 DOI:10.1007/s00605-024-02051-0
Markus Faulhuber, Anupam Gumber, Irina Shafkulovska
{"title":"高斯的AGM, Ramanujan的相应理论,和自伴随算子的谱界。","authors":"Markus Faulhuber, Anupam Gumber, Irina Shafkulovska","doi":"10.1007/s00605-024-02051-0","DOIUrl":null,"url":null,"abstract":"<p><p>We study the spectral bounds of self-adjoint operators on the Hilbert space of square-integrable functions, arising from the representation theory of the Heisenberg group. Interestingly, starting either with the von Neumann lattice or the hexagonal lattice of density 2, the spectral bounds obey well-known arithmetic-geometric mean iterations. This follows from connections to Jacobi theta functions and Ramanujan's corresponding theories. As a consequence, we rediscover that these operators resemble the identity operator as the density of the lattice grows. We also prove that the conjectural value of Landau's constant is obtained as half the cubic arithmetic-geometric mean of <math><mroot><mn>2</mn> <mn>3</mn></mroot> </math> and 1, which we believe to be a new result.</p>","PeriodicalId":54737,"journal":{"name":"Monatshefte fur Mathematik","volume":"206 3","pages":"551-582"},"PeriodicalIF":0.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872773/pdf/","citationCount":"0","resultStr":"{\"title\":\"The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators.\",\"authors\":\"Markus Faulhuber, Anupam Gumber, Irina Shafkulovska\",\"doi\":\"10.1007/s00605-024-02051-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the spectral bounds of self-adjoint operators on the Hilbert space of square-integrable functions, arising from the representation theory of the Heisenberg group. Interestingly, starting either with the von Neumann lattice or the hexagonal lattice of density 2, the spectral bounds obey well-known arithmetic-geometric mean iterations. This follows from connections to Jacobi theta functions and Ramanujan's corresponding theories. As a consequence, we rediscover that these operators resemble the identity operator as the density of the lattice grows. We also prove that the conjectural value of Landau's constant is obtained as half the cubic arithmetic-geometric mean of <math><mroot><mn>2</mn> <mn>3</mn></mroot> </math> and 1, which we believe to be a new result.</p>\",\"PeriodicalId\":54737,\"journal\":{\"name\":\"Monatshefte fur Mathematik\",\"volume\":\"206 3\",\"pages\":\"551-582\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872773/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monatshefte fur Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00605-024-02051-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte fur Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00605-024-02051-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

从海森堡群的表示理论出发,研究了平方可积函数在Hilbert空间上的自伴随算子的谱界。有趣的是,从冯·诺伊曼晶格或密度为2的六边形晶格开始,谱界服从众所周知的算术几何平均迭代。这是从雅可比函数和拉马努金的相应理论的联系中得出的。结果,我们发现随着晶格密度的增加,这些算子类似于恒等算子。我们还证明了朗道常数的推测值是2 3和1的三次算术-几何平均值的一半,这是一个新的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators.

We study the spectral bounds of self-adjoint operators on the Hilbert space of square-integrable functions, arising from the representation theory of the Heisenberg group. Interestingly, starting either with the von Neumann lattice or the hexagonal lattice of density 2, the spectral bounds obey well-known arithmetic-geometric mean iterations. This follows from connections to Jacobi theta functions and Ramanujan's corresponding theories. As a consequence, we rediscover that these operators resemble the identity operator as the density of the lattice grows. We also prove that the conjectural value of Landau's constant is obtained as half the cubic arithmetic-geometric mean of 2 3 and 1, which we believe to be a new result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
11.10%
发文量
155
审稿时长
4-8 weeks
期刊介绍: The journal was founded in 1890 by G. v. Escherich and E. Weyr as "Monatshefte für Mathematik und Physik" and appeared with this title until 1944. Continued from 1948 on as "Monatshefte für Mathematik", its managing editors were L. Gegenbauer, F. Mertens, W. Wirtinger, H. Hahn, Ph. Furtwängler, J. Radon, K. Mayrhofer, N. Hofreiter, H. Reiter, K. Sigmund, J. Cigler. The journal is devoted to research in mathematics in its broadest sense. Over the years, it has attracted a remarkable cast of authors, ranging from G. Peano, and A. Tauber to P. Erdös and B. L. van der Waerden. The volumes of the Monatshefte contain historical achievements in analysis (L. Bieberbach, H. Hahn, E. Helly, R. Nevanlinna, J. Radon, F. Riesz, W. Wirtinger), topology (K. Menger, K. Kuratowski, L. Vietoris, K. Reidemeister), and number theory (F. Mertens, Ph. Furtwängler, E. Hlawka, E. Landau). It also published landmark contributions by physicists such as M. Planck and W. Heisenberg and by philosophers such as R. Carnap and F. Waismann. In particular, the journal played a seminal role in analyzing the foundations of mathematics (L. E. J. Brouwer, A. Tarski and K. Gödel). The journal publishes research papers of general interest in all areas of mathematics. Surveys of significant developments in the fields of pure and applied mathematics and mathematical physics may be occasionally included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信