解缠组学对基因和组织间基因表达变异的影响。

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-03-04 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqaf011
Dustin J Sokolowski, Mingjie Mai, Arnav Verma, Gabriela Morgenshtern, Vallijah Subasri, Hareem Naveed, Maria Yampolsky, Michael D Wilson, Anna Goldenberg, Lauren Erdman
{"title":"解缠组学对基因和组织间基因表达变异的影响。","authors":"Dustin J Sokolowski, Mingjie Mai, Arnav Verma, Gabriela Morgenshtern, Vallijah Subasri, Hareem Naveed, Maria Yampolsky, Michael D Wilson, Anna Goldenberg, Lauren Erdman","doi":"10.1093/nargab/lqaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Many regulatory factors impact the expression of individual genes including, but not limited, to microRNA, long non-coding RNA (lncRNA), transcription factors (TFs), <i>cis-</i>methylation, copy number variation (CNV), and single-nucleotide polymorphisms (SNPs). While each mechanism can influence gene expression substantially, the relative importance of each mechanism at the level of individual genes and tissues is poorly understood. Here, we present the integrative Models of Estimated gene expression (iModEst), which details the relative contribution of different regulators to the gene expression of 16,000 genes and 21 tissues within The Cancer Genome Atlas (TCGA). Specifically, we derive predictive models of gene expression using tumour data and test their predictive accuracy in cancerous and tumour-adjacent tissues. Our models can explain up to 70% of the variance in gene expression across 43% of the genes within both tumour and tumour-adjacent tissues. We confirm that TF expression best predicts gene expression in both tumour and tumour-adjacent tissue whereas methylation predictive models in tumour tissues does not transfer well to tumour adjacent tissues. We find new patterns and recapitulate previously reported relationships between regulator and gene-expression, such as CNV-predicted <i>FGFR2</i> expression and SNP-predicted <i>TP63</i> expression. Together, iModEst offers an interactive, comprehensive atlas of individual regulator-gene-tissue expression relationships as well as relationships between regulators.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf011"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879402/pdf/","citationCount":"0","resultStr":"{\"title\":\"iModEst: disentangling -omic impacts on gene expression variation across genes and tissues.\",\"authors\":\"Dustin J Sokolowski, Mingjie Mai, Arnav Verma, Gabriela Morgenshtern, Vallijah Subasri, Hareem Naveed, Maria Yampolsky, Michael D Wilson, Anna Goldenberg, Lauren Erdman\",\"doi\":\"10.1093/nargab/lqaf011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many regulatory factors impact the expression of individual genes including, but not limited, to microRNA, long non-coding RNA (lncRNA), transcription factors (TFs), <i>cis-</i>methylation, copy number variation (CNV), and single-nucleotide polymorphisms (SNPs). While each mechanism can influence gene expression substantially, the relative importance of each mechanism at the level of individual genes and tissues is poorly understood. Here, we present the integrative Models of Estimated gene expression (iModEst), which details the relative contribution of different regulators to the gene expression of 16,000 genes and 21 tissues within The Cancer Genome Atlas (TCGA). Specifically, we derive predictive models of gene expression using tumour data and test their predictive accuracy in cancerous and tumour-adjacent tissues. Our models can explain up to 70% of the variance in gene expression across 43% of the genes within both tumour and tumour-adjacent tissues. We confirm that TF expression best predicts gene expression in both tumour and tumour-adjacent tissue whereas methylation predictive models in tumour tissues does not transfer well to tumour adjacent tissues. We find new patterns and recapitulate previously reported relationships between regulator and gene-expression, such as CNV-predicted <i>FGFR2</i> expression and SNP-predicted <i>TP63</i> expression. Together, iModEst offers an interactive, comprehensive atlas of individual regulator-gene-tissue expression relationships as well as relationships between regulators.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"7 1\",\"pages\":\"lqaf011\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879402/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqaf011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

许多调控因子影响单个基因的表达,包括但不限于microRNA、长链非编码RNA (lncRNA)、转录因子(TFs)、顺式甲基化、拷贝数变异(CNV)和单核苷酸多态性(snp)。虽然每种机制都能显著影响基因表达,但人们对每种机制在单个基因和组织水平上的相对重要性知之甚少。在这里,我们提出了估计基因表达的综合模型(iModEst),详细介绍了癌症基因组图谱(TCGA)中16,000个基因和21个组织中不同调节因子的基因表达的相对贡献。具体来说,我们使用肿瘤数据推导基因表达的预测模型,并测试其在癌性和肿瘤邻近组织中的预测准确性。我们的模型可以解释肿瘤和肿瘤邻近组织中43%基因中高达70%的基因表达差异。我们证实TF表达最好地预测肿瘤和肿瘤邻近组织中的基因表达,而肿瘤组织中的甲基化预测模型不能很好地转移到肿瘤邻近组织。我们发现了新的模式,并概括了先前报道的调节因子和基因表达之间的关系,例如cnv预测FGFR2表达和snp预测TP63表达。总之,iModEst提供了一个互动的,全面的图谱,单个调节因子-基因-组织表达关系以及调节因子之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
iModEst: disentangling -omic impacts on gene expression variation across genes and tissues.

Many regulatory factors impact the expression of individual genes including, but not limited, to microRNA, long non-coding RNA (lncRNA), transcription factors (TFs), cis-methylation, copy number variation (CNV), and single-nucleotide polymorphisms (SNPs). While each mechanism can influence gene expression substantially, the relative importance of each mechanism at the level of individual genes and tissues is poorly understood. Here, we present the integrative Models of Estimated gene expression (iModEst), which details the relative contribution of different regulators to the gene expression of 16,000 genes and 21 tissues within The Cancer Genome Atlas (TCGA). Specifically, we derive predictive models of gene expression using tumour data and test their predictive accuracy in cancerous and tumour-adjacent tissues. Our models can explain up to 70% of the variance in gene expression across 43% of the genes within both tumour and tumour-adjacent tissues. We confirm that TF expression best predicts gene expression in both tumour and tumour-adjacent tissue whereas methylation predictive models in tumour tissues does not transfer well to tumour adjacent tissues. We find new patterns and recapitulate previously reported relationships between regulator and gene-expression, such as CNV-predicted FGFR2 expression and SNP-predicted TP63 expression. Together, iModEst offers an interactive, comprehensive atlas of individual regulator-gene-tissue expression relationships as well as relationships between regulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信