Bian Li, Shukun Luo, Wenhua Wang, Jiahui Xu, Dingjiang Liu, Mohammed Shameem, John Mattila, Matthew C Franklin, Peter G Hawkins, Gurinder S Atwal
{"title":"PROPERMAB:一个集成框架,用于使用机器学习进行抗体可开发性的计算机预测。","authors":"Bian Li, Shukun Luo, Wenhua Wang, Jiahui Xu, Dingjiang Liu, Mohammed Shameem, John Mattila, Matthew C Franklin, Peter G Hawkins, Gurinder S Atwal","doi":"10.1080/19420862.2025.2474521","DOIUrl":null,"url":null,"abstract":"<p><p>Selection of lead therapeutic molecules is often driven predominantly by pharmacological efficacy and safety. Candidate developability, such as biophysical properties that affect the formulation of the molecule into a product, is usually evaluated only toward the end of the drug development pipeline. The ability to evaluate developability properties early in the process of antibody therapeutic development could accelerate the timeline from discovery to clinic and save considerable resources. <i>In silico</i> predictive approaches, such as machine learning models, which map molecular features to predictions of developability properties could offer a cost-effective and high-throughput alternative to experiments for antibody developability assessment. We developed a computational framework, PROPERMAB (PROPERties of Monoclonal AntiBodies), for large-scale and efficient <i>in silico</i> prediction of developability properties for monoclonal antibodies, using custom molecular features and machine learning modeling. We demonstrate the power of PROPERMAB by using it to develop models to predict antibody hydrophobic interaction chromatography retention time and high-concentration viscosity. We further show that structure-derived features can be rapidly and accurately predicted directly from sequences by pre-training simple models for molecular features, thus providing the ability to scale these approaches to repertoire-scale sequence datasets.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2474521"},"PeriodicalIF":7.3000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901398/pdf/","citationCount":"0","resultStr":"{\"title\":\"PROPERMAB: an integrative framework for <i>in silico</i> prediction of antibody developability using machine learning.\",\"authors\":\"Bian Li, Shukun Luo, Wenhua Wang, Jiahui Xu, Dingjiang Liu, Mohammed Shameem, John Mattila, Matthew C Franklin, Peter G Hawkins, Gurinder S Atwal\",\"doi\":\"10.1080/19420862.2025.2474521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selection of lead therapeutic molecules is often driven predominantly by pharmacological efficacy and safety. Candidate developability, such as biophysical properties that affect the formulation of the molecule into a product, is usually evaluated only toward the end of the drug development pipeline. The ability to evaluate developability properties early in the process of antibody therapeutic development could accelerate the timeline from discovery to clinic and save considerable resources. <i>In silico</i> predictive approaches, such as machine learning models, which map molecular features to predictions of developability properties could offer a cost-effective and high-throughput alternative to experiments for antibody developability assessment. We developed a computational framework, PROPERMAB (PROPERties of Monoclonal AntiBodies), for large-scale and efficient <i>in silico</i> prediction of developability properties for monoclonal antibodies, using custom molecular features and machine learning modeling. We demonstrate the power of PROPERMAB by using it to develop models to predict antibody hydrophobic interaction chromatography retention time and high-concentration viscosity. We further show that structure-derived features can be rapidly and accurately predicted directly from sequences by pre-training simple models for molecular features, thus providing the ability to scale these approaches to repertoire-scale sequence datasets.</p>\",\"PeriodicalId\":18206,\"journal\":{\"name\":\"mAbs\",\"volume\":\"17 1\",\"pages\":\"2474521\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901398/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mAbs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19420862.2025.2474521\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2474521","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
先导治疗分子的选择通常主要是由药理功效和安全性驱动的。候选可开发性,如影响分子形成产品的生物物理性质,通常只在药物开发管道的最后进行评估。在抗体治疗开发过程中早期评估可发展性特性的能力可以加快从发现到临床的时间,并节省大量资源。在计算机预测方法中,如机器学习模型,将分子特征映射到可开发性特性的预测,可以为抗体可开发性评估的实验提供一种具有成本效益和高通量的替代方法。我们开发了一个计算框架PROPERMAB (PROPERties of Monoclonal AntiBodies),用于使用自定义分子特征和机器学习建模,大规模和高效地预测单克隆抗体的可开发性特性。我们通过使用PROPERMAB开发模型来预测抗体疏水相互作用色谱保留时间和高浓度粘度,从而证明了PROPERMAB的强大功能。我们进一步表明,通过预先训练简单的分子特征模型,可以快速准确地直接从序列中预测结构衍生的特征,从而提供将这些方法扩展到库级序列数据集的能力。
PROPERMAB: an integrative framework for in silico prediction of antibody developability using machine learning.
Selection of lead therapeutic molecules is often driven predominantly by pharmacological efficacy and safety. Candidate developability, such as biophysical properties that affect the formulation of the molecule into a product, is usually evaluated only toward the end of the drug development pipeline. The ability to evaluate developability properties early in the process of antibody therapeutic development could accelerate the timeline from discovery to clinic and save considerable resources. In silico predictive approaches, such as machine learning models, which map molecular features to predictions of developability properties could offer a cost-effective and high-throughput alternative to experiments for antibody developability assessment. We developed a computational framework, PROPERMAB (PROPERties of Monoclonal AntiBodies), for large-scale and efficient in silico prediction of developability properties for monoclonal antibodies, using custom molecular features and machine learning modeling. We demonstrate the power of PROPERMAB by using it to develop models to predict antibody hydrophobic interaction chromatography retention time and high-concentration viscosity. We further show that structure-derived features can be rapidly and accurately predicted directly from sequences by pre-training simple models for molecular features, thus providing the ability to scale these approaches to repertoire-scale sequence datasets.
期刊介绍:
mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.